130 CHAPTER 7. THE DERIVATIVE

Example 7.1.12 Show limx→a√

x =√

a whenever a ≥ 0. In the case that a = 0, take thelimit from the right.

There are two cases. First consider the case when a > 0. Let ε > 0 be given. Multiplyand divide by

√x+√

a. This yields

∣∣√x−√

a∣∣= ∣∣∣∣ x−a√

x+√

a

∣∣∣∣ .Now let 0 < δ 1 < a/2. Then if |x−a|< δ 1,x > a/2 and so

∣∣√x−√

a∣∣= ∣∣∣∣ x−a√

x+√

a

∣∣∣∣≤ |x−a|(√a/√

2)+√

a≤ 2√

2√a|x−a| .

Now let 0 < δ ≤min(

δ 1,ε√

a2√

2

). Then for 0 < |x−a|< δ ,

∣∣√x−√

a∣∣≤ 2

√2√a|x−a|< 2

√2√a

ε√

a2√

2= ε.

Next consider the case where a = 0. In this case, let ε > 0 and let δ = ε2. Then if0 < x−0 < δ = ε2, it follows that 0≤

√x <

(ε2)1/2

= ε.

7.2 Exercises1. Find the following limits if possible

(a) limx→0+|x|x

(b) limx→0+x|x|

(c) limx→0−|x|x

(d) limx→4x2−16x+4

(e) limx→3x2−9x+3

(f) limx→−2x2−4x−2

(g) limx→∞x

1+x2

(h) limx→∞−2 x1+x2

2. Find limh→0

1(x+h)3

− 1x3

h .

3. Find limx→44√x−√

2√x−2 .

4. Find limx→∞

5√3x+ 4√x+7√

x√3x+1

.

5. Find limx→∞(x−3)20(2x+1)30

(2x2+7)25 .

6. Find limx→2x2−4

x3+3x2−9x−2 .

7. Find limx→∞

(√1−7x+ x2−

√1+7x+ x2

).

8. Prove Theorem 7.1.3 for right, left and limits as y→ ∞.

9. Prove from the definition that limx→a3√

x = 3√

a for all a ∈ R. Hint: You might wantto use the formula for the difference of two cubes,

a3−b3 = (a−b)(a2 +ab+b2) .

10. Prove Theorem 7.1.8 from the definitions of limit and continuity.

130 CHAPTER 7. THE DERIVATIVEExample 7.1.12 Show limy+q\/x = \/a whenever a > 0. In the case that a = 0, take thelimit from the right.There are two cases. First consider the case when a > 0. Let € > 0 be given. Multiplyand divide by \/x+ \/a. This yields|Vx— val =Now let 0 < 6; <a/2. Then if |x—a| < 6,,x > a/2 and so|x —al < 2v2ve was ~ (Va/v2)+Va~ <aNow let 0< 5 <min (6), eve). Then for 0 < |x—a| <4,2v2EVa _Va 2/2Next consider the case where a = 0. In this case, let € > O and let 6 = €”. Then if0<x—-0<6 =e’, it follows that 0 < /x < (e2)' — €,IvE— val < 782 al <7.2 Exercises1. Find the following limits if possible1EstLx3(a) Hm04 2. Find limp 49 “>(b) lim,0+ jy a(c) lim,s0- “! 3. Find lim, 44 SS.: 216(d) limy4 557° 4. Find lim WBxt Ye+1V%. 2-9 . eel V/3x+l ,(e) lim3 =20 30est 5. Find lity 0 aeXx(g) limy eo oa(h) lim yo. 274 6. Find limy.2 = 47. Find limy 0c (vi Txt — vi +Ix +3) ,8. Prove Theorem 7.1.3 for right, left and limits as y + ©,9. Prove from the definition that lim,_,, ¥/x = </a for all a € R. Hint: You might wantto use the formula for the difference of two cubes,a’ —b> =(a—b) (a +ab+b’).10. Prove Theorem 7.1.8 from the definitions of limit and continuity.