158 CHAPTER 8. POWER SERIES

Using the binomial theorem,

f (x+h)− f (x)h

=1h

∑k=0

ak

((x+h−a)k− (x−a)k

)=

1h

∑k=1

ak

(k

∑j=0

(kj

)(x−a) j hk− j− (x−a)k

)

=∞

∑k=1

ak

(k−1

∑j=0

(kj

)(x−a) j h(k−1)− j

)

Then ∣∣∣∣∣ f (x+h)− f (x)h

−∞

∑k=1

akk (x−a)k−1

∣∣∣∣∣=

∣∣∣∣∣ ∞

∑k=1

ak

(k−1

∑j=0

(kj

)(x−a) j h(k−1)− j− k (x−a)k−1

)∣∣∣∣∣=

∣∣∣∣∣ ∞

∑k=2

ak

(k−1

∑j=0

(kj

)(x−a) j h(k−1)− j− k (x−a)k−1

)∣∣∣∣∣=

∣∣∣∣∣ ∞

∑k=2

ak

(k−2

∑j=0

(kj

)(x−a) j h(k−1)− j

)∣∣∣∣∣Therefore,∣∣∣∣∣ f (x+h)− f (x)

h−

∑k=1

akk (x−a)k−1

∣∣∣∣∣≤ ∞

∑k=2|ak|(

k−2

∑j=0

(kj

)|x−a| j |h|(k−1)− j

)

Now it is clear that k (k−1)(k−2

j

)≥(k

j

)and so

= |h|∞

∑k=2|ak|(

k−2

∑j=0

(kj

)|x−a| j |h|(k−2)− j

)

≤ |h|∞

∑k=2|ak|k (k−1)

k−2

∑j=0

(k−2

j

)|x−a| j |h|(k−2)− j

= |h|∞

∑k=2|ak|k (k−1)(|x−a|+ |h|)k−2 < |h|

∑k=2|ak|k (k−1)rk−2 (8.4)

By assumption and what was just observed about limk→∞ k1/k,

lim supk→∞

(|ak|k (k−1)rk−2

)1/k< 1

and so the series on the right in 8.4 converges. Therefore, assuming |h| is small enough,∣∣∣∣∣ f (x+h)− f (x)h

−∞

∑k=1

akk (x−a)k−1

∣∣∣∣∣<C |h|

158 CHAPTER 8. POWER SERIESUsing the binomial theorem,f(xt+h) —f (x) lSrn ie pe (tna) x= a)')ThenPeres ) ~¥ apk(x—a)k 1k=lSS (k i p(k-1) k-1= Yi ax (‘) (x—a)ih J—k(x—a)k=l j=0. — (k i p(k-1)— k-l= Ye ax (‘) (x—a)’h J—k(x—a)k=2 — \j=0co k-2 k ;= |Pa ( ( ) ayo) |k=2 j=o \JTherefore,Pes Le) Lake of] ial (E (4 ) be al! |A|“—)- ‘Now it is clear that k (k — er *\> ( ) and somi Stal (35 (5) al! |n\- ‘k-—2DL k-1) x ( ; )e- al? |n|&2-1IA= |h| YY Jal &(K—1) (lx a] + Jal) < | Y Jagd eR 1)? (8.4)k=2 k=2By assumption and what was just observed about lim,_,.. KA,L/klim sup (an) &(k ye) <1k—s00and so the series on the right in 8.4 converges. Therefore, assuming |/| is small enough,h)-pear — FE auk(e- ak!) <Ch|