12.3. INTEGRATING AND DIFFERENTIATING FOURIER SERIES 283
where Ak =1
2π
∫π
−πG(y)eikydy. Now from 12.10 and the definition of the Fourier coeffi-
cients for f ,
G(π) = F (π)−a02π = 0 = A0 + limn→∞
n
∑k=−n,k ̸=0
Ak (−1)k (12.11)
and so
A0 =− limn→∞
n
∑k=−n,k ̸=0
Ak (−1)k ≡−∞
∑k=−∞,k ̸=0
Ak (−1)k (12.12)
Next consider Ak for k ̸= 0.
Ak ≡ 12π
∫π
−π
G(x)e−ikxdx≡ 12π
∫π
−π
∫ x
−π
( f (t)−a0)dte−ikxdx
=1
2π
∫π
−π
e−ikx∫ x
−π
( f (t)−a0)dtdx
Now let ψ (x) ≡∫ x−π
( f (t)−a0)dt and φ k (x) =e−ikx
−ik . Then the above integral is of theform 1
2π
∫π
−πψ (x)dφ k (x) . Since ψ (π)φ k (π) = 0 = ψ (−π)φ k (−π) , integration by parts,
Theorem 9.4.1, says that the above equals
− 12π
∫π
−π
φ k (x)dψ (x) =1
2π
∫π
−π
e−ikx
ikdψ (x)
Use Corollary 9.3.18 to write as a sum of finitely many integrals
n
∑k=1
∫ xk
xk−1
e−ikx
ikdψ (x) .
It follows from Proposition 9.4.3 that this is
Ak =1
2π
∫π
−π
e−ikx
ik( f (x)−a0)dx =
1ik
12π
∫π
−π
f (x)e−ikxdx≡ ak
ik
Thus this shows from 12.12, that for all x,
G(x) =∞
∑k=−∞,k ̸=0
ak
ikeikx +A0, A0 =−
∞
∑k=−∞,k ̸=0
Ak (−1)k
and so, ∫ x
−π
f (t)dt−∫ x
−π
a0 =∞
∑k=−∞,k ̸=0
ak
ikeikx− ak
ikeik(−π)
which shows that ∫ x
−π
f (t)dt =∫ x
−π
a0 +∞
∑k=−∞,k ̸=0
ak
∫ x
−π
eiktdt
This proves the following theorem.
Theorem 12.3.2 Let f be 2π periodic and piecewise continuous. Then∫ x
−π
f (t)dt =∫ x
−π
a0dt + limn→∞
n
∑k=−n,k ̸=0
ak
∫ x
−π
eiktdt
where ak are the Fourier coefficients of f . This holds for all x ∈ R.