354 CHAPTER 14. THE LEBESGUE INTEGRAL

x > 1,(√

2√

xs− x ln(

1+ s√

2x

))−(√

2s− ln(

1+ s√

2))

equals the expression

√2s(√

x−1)+ ln

 1+s√

2(1+s

√2x

)x

> 0.

Therefore,(√

2√

xs− x ln(

1+ s√

2x

))>(√

2s− ln(

1+ s√

2))

and so, for s≥ 1,

exp

(−s2h

(s

√2x

))≤ exp

(−(√

2s− ln(

1+ s√

2)))

=(

1+ s√

2)

e−√

2s

Thus, there exists a dominating function for X[−√ x

2 ,∞](s)exp

(−s2h

(s√

2x

))and

limx→∞ X[−√ x

2 ,∞](s)exp

(−s2h

(s√

2x

))= exp

(−s2

)so by the dominated con-

vergence theorem,

limx→∞

∫∞

−√

x/2exp

(−s2h

(s

√2x

))ds =

∫∞

−∞

e−s2ds =

√π

See Problem 49 on Page 224 or Theorem 9.9.5. This yields a general Stirling’sformula, limx→∞

Γ(x+1)xxe−x

√2x

=√

π .

354CHAPTER 14. THE LEBESGUE INTEGRALx>I, (v2vis—xin (1 +s2)) — (v2s—In (1 +sv2)) equals the expressionV2s(/x—1) +n | v2, | 50.(oss)Therefore, (v2v —xIn (1 +s?) > (v2s—In (1 +sv2)) and so, for s > 1,(eno) sen) (asThus, there exists a dominating function for A JF | (s) exp ( sh (sy2)) and2?limy 00 A Ji] (s) exp (-» (s\/2)) = exp (—s*) so by the dominated con-vergence theorem,oO 2 ‘colim exp (-*: (+\2)) ds = / eds = VnX—}oo —4/x/2 x —ooSee Problem 49 on Page 224 or Theorem 9.9.5. This yields a general Stirling’s: Titl) _formula, lim,_,.. za = Jt.