A.3. TRANSCENDENTAL NUMBERS 369

Defining fk (x) and Ik (s) as in Lemma A.3.4,

fk (x)≡v(m+1)pQp

k (x)xp−1

(p−1)!

and as before, let p be a very large prime number. It follows from Lemma A.3.4 that foreach k = 1, · · · ,n,

ck

mk

∑i=1

Ik (β (k)i) =

(Kk + ck

mk

∑i=1

eβ (k)i

)deg( fk)

∑j=0

f ( j)k (0)

(Kk

deg( fk)

∑j=0

f ( j)k (0)+ ck

mk

∑i=1

deg( fk)

∑j=0

f ( j)k (β (k)i)

)

This is exactly the same computation as in the beginning of that lemma except one addsand subtracts Kk ∑

deg( fk)j=0 f ( j)

k (0) rather than K ∑deg( fk)j=0 f ( j)

k (0) where the Kk are chosen suchthat their sum equals K and the term on the left converges to 0 as p→∞. By Lemma A.3.4,

ck

mk

∑i=1

Ik (β (k)i) =

(Kk + ck

mk

∑i=1

eβ (k)i

)(U p +Nk p)

−Kk (U p +Nk p)− ckN′k p

=

(Kk + ck

mk

∑i=1

eβ (k)i

)U p−KU p +Mk p

where Mk is some integer. Now add.

m

∑k=1

ck

mk

∑i=1

Ik (β (k)i) =U p

(K +

m

∑k=1

ck

mk

∑i=1

eβ (k)i

)−KmU p +Mp

If K +∑mk=1 ck ∑

mki=1 eβ (k)i = 0, then if p > max(K,m,U) you would have −KmU p +Mp

an integer so it cannot equal the left side which will be small if p is large. Therefore, ∗follows.

Next is an even more interesting Lemma which follows from the above corollary.

Lemma A.3.7 If b0,b1, · · · ,bn are non zero integers, and γ1, · · · ,γn are distinct alge-braic numbers, then

b0eγ0 +b1eγ1 + · · ·+bneγn ̸= 0

Proof: Assumeb0eγ0 +b1eγ1 + · · ·+bneγn = 0 (1.12)

Divide by eγ0 and letting K = b0,

K +b1eα(1)+ · · ·+bneα(n) = 0 (1.13)

where α (k) = γk− γ0. These are still distinct algebraic numbers. Therefore, α (k) is a rootof a polynomial

Qk (x) = vkxmk + · · ·+uk (1.14)