384 APPENDIX B. INTEGRATION ON ROUGH PATHS∗
but that on the inside equals∣∣∣∫ a
0 Y dF +∫ T
a Y dF−∫ T
0 Y dF∣∣∣ because this property of the
integral holds for Stieltjes integrals. Thus the claim holds. Other properties of the integralcan also be inferred from this approximation with the Stieltjes integrals for piecewise linearFn. It follows that∣∣∣∣∫ t
sY dF
∣∣∣∣= ∣∣∣∣∫ t
0Y dF−
∫ s
0Y dF
∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t]
What of continuity of t→∫ t
0 Y dF? Letting Fn be the sequence of piecewise linear func-tions described above, t→
∫ t0 Y dFn is continuous and letting p′ > p∣∣∣∣∫ t
0Y dF−
∫ t
0Y dFn
∣∣∣∣= ∣∣∣∣∫ t
0Y d (F−Fn)
∣∣∣∣≤Cp′q ∥Y∥V q([0,T ]) ∥F−Fn∥p′,[0,T ]
Thus, as n→ ∞, one has uniform convergence of the continuous functions t →∫ t
0 Y dFn tot→
∫ t0 Y dF thanks to Theorem B.2.3 which implies that the right side converges to 0 since
p′ > p.Consider the other estimate 2.4. Let P be a dissection 0 = t0 < t1 < · · ·< tn = T . Let
Ψ(t)≡∫ t
0 Y dF . From the definition of the integral in terms of a limit as |P|→ 0, it followsthat, since p≥ 1,
n−1
∑i=0|Ψ(ti+1)−Ψ(ti)|p ≤
n−1
∑i=0
∣∣∣∣∫ ti+1
tiY dF
∣∣∣∣p ≤ n−1
∑i=0
Cppq ∥Y∥
pV q([0,T ]) ∥F∥
pp,[ti,ti+1]
≤ Cppq ∥Y∥
pV q([0,T ])
n−1
∑i=0∥F∥p
p,[ti,ti+1]≤Cp
pq ∥Y∥pV q([0,T ])
(n−1
∑i=0∥F∥p,[ti,ti+1]
)p
≤ Cppq ∥Y∥
pV q([0,T ]) ∥F∥
pp,[0,T ]
Recall that since p ≥ 1, if each ai ≥ 0,∑i api ≤ (∑i ai)
p. Then taking the sup over all such
dissections, it follows that∥∥∥∫ (·)0 Y dF
∥∥∥p,[0,T ]
≤ Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]. Also, from the
estimate, ∣∣∣∣∫ t
0Y dF
∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,t] ≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]
Taking sup for all t,∥∥∥∫ (·)0 Y dF
∥∥∥∞
≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ] and so∥∥∥∥∫ (·)
0Y dF
∥∥∥∥V p([0,T ])
≤ 2Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]