14.3. DIVERGENCE THEOREM 401

where

mp−1

(k−1

∏j=1

(ai

j,bij)×

p

∏j=k+1

(ai

j,bij)\Ai

)= 0.

and we assume there is a constant C such that for all i and j,∣∣∣ ∂gi

∂x j

∣∣∣ ≤C off Ai and that ineach variable, g can be recovered from integrating an appropriate partial derivative. Thatis, each gk is absolutely continuous in each variable.

To illustrate the above here is a picture.

U ∩Qi

Qi U ∩QiQi

Recall from calculus that if z−g(x̂) = 0 then to get a normal vector to the level surface,it will be ± the gradient.

Lemma 14.3.2 Let α1, · · · ,α p be real numbers and let A(α1, · · · ,α p) be the matrixwhich has 1+α2

i in the iith slot and α iα j in the i jth slot when i ̸= j. Then detA = 1+∑

pi=1 α2

i .

Proof of the claim: The matrix, A(α1, · · · ,α p) is of the form

A(α1, · · · ,α p) =

1+α2

1 α1α2 · · · α1α pα1α2 1+α2

2 α2α p...

. . ....

α1α p α2α p · · · 1+α2p

Now consider the product of a matrix and its transpose, BT B below.

1 0 · · · 0 α10 1 0 α2...

. . ....

0 1 α p−α1 −α2 · · · −α p 1



1 0 · · · 0 −α10 1 0 −α2...

. . ....

0 1 −α pα1 α2 · · · α p 1

 (14.10)

This product equals a matrix of the form(

A(α1, · · · ,α p) 00 1+∑

pi=1 α2

i

). Therefore,(

1+∑pi=1 α2

i)

det(A(α1, · · · ,α p)) = det(B)2 = det(BT)2. However, using row operations,

detBT = det

1 0 · · · 0 α10 1 0 α2...

. . ....

0 1 α p0 0 · · · 0 1+∑

pi=1 α2

i

= 1+p

∑i=1

α2i

and therefore, (1+

p

∑i=1

α2i

)det(A(α1, · · · ,α p)) =

(1+

p

∑i=1

α2i

)2

14.3. DIVERGENCE THEOREM 401wherekL, p -L 1 U U —_my-1 | T] (@-b5) x TT (@)-55) \Ai } = 0.j=l j=k+1se <C off Aj and that ineach variable, g can be recovered from integrating an appropriate partial derivative. Thatis, each gy is absolutely continuous in each variable.and we assume there is a constant C such that for all i and j,To illustrate the above here is a picture.MN UNQ; QiUNQ; _Recall from calculus that if z— g (4) = 0 then to get a normal vector to the level surface,it will be + the gradient.Lemma 14.3.2 Let a ,---,@,) be real numbers and let A(Q,-+-,Q@p)) be the matrixwhich has | + a? in the ii” slot and 0,0; in the ij" slot when i ¢ j. Then deta = 1+P 2Yin &7-Proof of the claim: The matrix, A (@,--- ,@)) is of the form21+Q; QjQ7 +++ QAO,aja 1405 02. OpA(Q,- Ap) =OC, AnH, «+ 14+ aeNow consider the product of a matrix and its transpose, B’ B below.1 O ::: O a 1 O + O ~@40 1 0 a2 0 1 0 —A2; . : : . (14.10)0 1 @ 0 1 —-@p,—H; —Q +++ —Qy 1 A, 2 ++ Ap 1This product equals a matrix of the form ( A ty Op) 14 y a? ) . Therefore,(1+, a?) det(A(a1,---,@,)) =det (B)” = det (BT)? . However, using row operations,1 0 --. 0 Oy0 1 0 Qn >detB’ =det| : m ; =14+) a;0 1 Op =|0 0 0 14+Y2, a7and therefore,