14.5. EXERCISES 405

yrρ Rn−1

Taking slices at height y as shown and using that these slices have p− 1 dimensionalarea equal to α p−1rp−1, it follows α pρ p = 2

∫ ρ

0 α p−1(ρ2− y2

)(p−1)/2 dy since the r at agiven y is

√ρ2− y2. In the integral, change variables, letting y = ρ cosθ . Then α pρ p =

2ρ pα p−1∫ π/2

0 sinp (θ)dθ . It follows that

α p = 2α p−1

∫π/2

0sinp (θ)dθ . (14.13)

From this we find a formula for α p.First note that Γ

( 12

)=∫

0 e−tt−1/2dt =∫

0 e−u2u−12udu = 2

∫∞

0 e−u2=√

π from ele-mentary calculus using polar coordinates and change of variables.

Theorem 14.4.1 α p = π p/2

Γ( p2 +1)

where Γ denotes the gamma function, defined for

α > 0 by Γ(α)≡∫

0 e−ttα−1dt.

Proof: Let p = 1 first. Then α1 = π = π1/2

Γ( 12+1)

because Γ(α +1) = αΓ(α) so the

right side is π1/212 Γ( 1

2 )= 2 which is indeed the one dimensional area of the unit ball in one

dimension. Similarly it is true for p = 2,3. Assume true for p ≥ 3. Then using 14.13 andinduction,

α p+1 = 2

α p

π p/2

Γ( p

2 +1) ∫ π/2

0sinp+1 (θ)dθ

Using an integration by parts, this equals 2 π p/2

Γ( p2 +1)

pp+1

∫ π/20 sinp−1 (θ)dθ . By 14.13 and

induction this is

π p/2

Γ( p

2 +1) p

p+1α p−1

α p−2=

π p/2

Γ( p

2 +1) p

p+1

π(p−1)/2

Γ

(p−1

2 +1)

π(p−2)/2

Γ

(p−2

2 +1) =

2π(p+1)/2Γ( p

2

)Γ( p

2 +1)

Γ

(p−1

2 +1) p/2

p+1

=2π(p+1)/2Γ

( p2 +1

)Γ( p

2 +1)

Γ

(p−1

2 +1) 1

p+1=

π(p+1)/2

Γ

(p+1

2

) 1p+1

2

=π(p+1)/2

Γ

(p+1

2 +1) ■

14.5 Exercises1. A random vectorX, with values in Rp has a multivariate normal distribution written

asX ∼ Np (m,Σ) if for all Borel E ⊆ Rp,

λX (E) =∫Rp

XE (x)1

(2π)p/2 det(Σ)1/2 e−12 (x−m)∗Σ−1(x−m)dmp

14.5. EXERCISES 405R’-!Taking slices at height y as shown and using that these slices have p — | dimensionalarea equal to @»jr?~!, it follows app? = 2 fP ap—1 (p? —yyP VP dy since the r at agiven y is \/p2—-y? . In the integral, change variables, letting y= pcos@. Then a,p? =2p? otp_1 a’? sin? (8) d@. It follows thatn/2y= Doty | sin’ (0) d0. (14.13)From this we find a formula for ap.First note that (5) = foe tr '/?dt = Jy eu !2Qudu =2[°e = VF from ele-mentary calculus using polar coordinates and change of variables.Theorem 14.4.1 « p= re Hn) where I’ denotes the gamma function, defined for2a> 0 byT (a) = fy ett dt.mi _ because I'(a+1) = al (a) so theT(441). Ly: 1/2 a, . . . .right side is wy = 2 which is indeed the one dimensional area of the unit ball in oneaProof: Let p = | first. Then | = 7 =dimension. Similarly it is true for p = 2,3. Assume true for p > 3. Then using 14.13 andinduction,OpqpP/2m/2Oty =2 7 sin?! (6) d00r(g+lUsing an integration by parts, this equals Tay at In’ * sin?! (@)d@. By 14.13 andinduction this isqpp—1)/2gp /2 P Opa _ gpP/2 Pp r(2+1) 2n(P)/27 (2) p/2Pp 7 P (p-2)/2 =T($ +1) ptl apo ME+ I) Pt ey r(g+ijr(2t+1) P+!2n'P VPP (E+ 1) 1 g(Ptl)/2 4 p(Pt1)/2—1 1 1\ pel 1 7rg+iyr(4t+ijeth (ety r(etsi)14.5 Exercises1. Arandom vector X, with values in R? has a multivariate normal distribution writtenas X ~ N, (m,%) if for all Borel E C R?,1 =1 aAx(E =| X(e) ——_b ee m)"E"(e-m) gyx{é) RP #(®) SPP acta)? ™p