21.1. THEOREMS BASED ON BAIRE CATEGORY 537

To aid in the proof, here is a lemma.

Lemma 21.1.11 Let a and b be positive constants and suppose B(0,a) ⊆ L(B(0,b)).Then L(B(0,b))⊆ L(B(0,2b)).

Proof: Let z ∈ L(B(0,b)). Then let x1 ∈ B(0,b) with ∥z−Lx1∥ < a21 . Then it follows

that on multiplying by 2, ∥2z−2Lx1∥< a and so there is x2 ∈ B(0,b) with

∥(2z−2Lx1)−Lx2∥<a2

which implies∥∥∥z−

(Lx1 +

Lx22

)∥∥∥< a22 . If xi ∈ B(0,b) and

∥∥∥z−∑ni=0

Lxi2i

∥∥∥< a2n , then∥∥∥∥∥2n

(z−

n

∑i=0

Lxi

2i

)∥∥∥∥∥< a

Continuing this way, there is xn+1 ∈ B(0,b) such that∥∥∥∥∥2n

(z−

n

∑i=0

Lxi

2i

)−L(xn+1)

∥∥∥∥∥< a2

and so∥∥∥z−∑

n+1i=0

Lxi2i

∥∥∥ < a2n+1 . Let x ≡ ∑

∞i=0

xi2i . Then from the triangle inequality, ∥x∥ <

∑∞i=0

b2i = 2b and by continuity of L,

∥z−Lx∥= limn→∞

∥∥∥∥∥z−L

(n

∑i=0

xi

2i

)∥∥∥∥∥≤ limn→∞

a2n = 0 ■

Proof of Theorem 21.1.10: Y = ∪∞n=1L(B(0,n)). By Corollary 21.1.3, L(B(0,n0)) has

nonempty interior for some n0. Thus B(y,r)⊆ L(B(0,n0)) for some y and some r > 0. SinceL is linear B(−y,r)⊆ L(B(0,n0)) also. Here is why. If z∈B(−y,r), then−z∈B(y,r) and sothere exists xn ∈ B(0,n0) such that Lxn→−z. Therefore, L(−xn)→ z and −xn ∈ B(0,n0)also. Therefore z ∈ L(B(0,n0)). Then it follows that

B(0,r) ⊆ B(y,r)+B(−y,r)≡ {y1 + y2 : y1 ∈ B(y,r) and y2 ∈ B(−y,r)}⊆ L(B(0,2n0))

The reason for the last inclusion is that from the above, if y1 ∈ B(y,r) and y2 ∈ B(−y,r),there exists xn,zn ∈ B(0,n0) such that Lxn→ y1, Lzn→ y2. Therefore, ∥xn + zn∥ ≤ 2n0 andso (y1 + y2) ∈ L(B(0,2n0)).

By Lemma 21.1.11, L(B(0,2n0))⊆ L(B(0,4n0)) so B(0,r)⊆ L(B(0,4n0)). Letting a =r(4n0)

−1, it follows, since L is linear, that B(0,a)⊆ L(B(0,1)). It follows since L is linear,

L(B(0,r))⊇ B(0,ar). (21.2)

Now let U be open in X and let x+B(0,r) = B(x,r)⊆U . Using 21.2,

L(U)⊇ L(x+B(0,r))

= Lx+L(B(0,r))⊇ Lx+B(0,ar) = B(Lx,ar).

21.1. THEOREMS BASED ON BAIRE CATEGORY 537To aid in the proof, here is a lemma.Lemma 21.1.11 Let a and b be positive constants and suppose B(0,a) C L(B(0,b)).Then L(B(0,b)) C L(B(0, 2b)).Proof: Let z € L(B(0,b)). Then let x; € B(0,b) with ||z—Lx,|| < 37. Then it followsthat on multiplying by 2, |/2z— 2Lx;|| < a and so there is x. € B(0,b) withaI|(2z— 2Lx1) — Lxal| < 5which implies le (En + 5)| < 35. If x; € B(0,b) and lz- n Fall < 57, theni=0 9Lx;2” (: _ d *)i=Continuing this way, there is x,+1 € B(0,b) such that<aLx; a2{z-yp =!) —1 <5(: » i (%n+1)|] <5and so Ie an ea < sat- Let x = Yio }. Then from the triangle inequality, ||x|| <Lito 4 = 2b and by continuity of L,\|z—Lx|| = li L yz <lim“ =08< - nie < 0 2! — ne Qn ~Proof of Theorem 21.1.10: Y = U*_,L(B(0,n)). By Corollary 21.1.3, L(B(0,no)) hasnonempty interior for some no. Thus B(y,r) C L(B(0,n0)) for some y and some r > 0. SinceLis linear B(—y,r) C L(B(0,no)) also. Here is why. If z € B(—y,r), then —z € B(y,r) and sothere exists x, € B(0,no) such that Lx, — —z. Therefore, L(—x,) + z and —x, € B(0,n0)also. Therefore z € L(B(0,70)). Then it follows thatB(O,r) © B&,r)+B(-y,r) = {yi +y2: 91 € B(y,r) and y2 € B(—y,r)}The reason for the last inclusion is that from the above, if y; € B(y,r) and y2 € B(—y,r),there exists X),Z) € B(0,no) such that Lx, + y,, LZ — yo. Therefore, ||xp + Z,|| <2no andso (yi +y2) € L(B(0, 2n0)).By Lemma 21.1.11, L(B(0,2n0)) C L(B(0,4no)) so B(O,r) C L(B(0,4no)). Letting a =r(4no)~', it follows, since L is linear, that B(0,a) C L(B(0, 1)). It follows since L is linear,L(B(0,r)) > B(0, ar). (21.2)Now let U be open in X and let x+ B(0,r) = B(x,r) CU. Using 21.2,L(U) D L(x + B(0,r))= Lx+L(B(0,r)) > Lx+ B(0,ar) = B(Lx,ar).