568 CHAPTER 21. BANACH SPACES

+ ∑k>|log2(t−s)|

∣∣∣2−k/p sin(

2kπt)−2−k/p sin

(2k

πs)∣∣∣

If t = 1 and s= 0, there is really nothing to show because then the difference equals 0. Thereis also nothing to show if t = s. From now on, 0 < t− s < 1. Let k0 be the largest integerwhich is less than or equal to |log2 (t− s)| = − log2 (t− s). Note that − log(t− s) > 0because 0 < t− s < 1. Then

| fε (t)− fε (s)| ≤ ∑k≤k0

∣∣∣2−k/p sin(

2kπt)−2−k/p sin

(2k

πs)∣∣∣

+ ∑k>k0

∣∣∣2−k/p sin(

2kπt)−2−k/p sin

(2k

πs)∣∣∣

≤ ∑k≤k0

2−k/p2kπ |t− s|+ ∑

k>k0

2−k/p2

Now k0 ≤ − log2 (t− s) < k0 + 1 and so −k0 ≥ log2 (t− s) ≥ −(k0 +1). Hence 2−k0 ≥|t− s| ≥ 2−k02−1 and so 2−k0/p ≥ |t− s|1/p ≥ 2−k0/p2−1/p. Using this in the sums,

| fε (t)− fε (s)| ≤ |t− s|Cp + ∑k>k0

2−k/p2k0/p2−k0/p2

≤ |t− s|Cp + ∑k>k0

2−k/p2k0/p(

21/p |t− s|1/p)

2

≤ |t− s|Cp + ∑k>k0

2−(k−k0)/p(

21/p |t− s|1/p)

2

≤ Cp |t− s|+(

21+1/p) ∞

∑k=1

2−k/p |t− s|1/p

= Cp |t− s|+Dp |t− s|1/p ≤Cp |t− s|1/p +Dp |t− s|1/p

Thus fε is indeed 1/p Holder continuous.Now consider ε ̸= ε′. Suppose the first discrepancy in the two sequences occurs with

ε j. Thus one is 1 and the other is −1. Let t = i+12 j+1 ,s =

i2 j+1

| fε (t)− fε (s)− ( fε′ (t)− fε′ (s))|=∣∣∣∣∣ ∑∞k= j εk2−k/p sin

(2kπt

)−∑

∞k= j εk2−k/p sin

(2kπs

)−(

∑∞k= j ε ′k2−k/p sin

(2kπt

)−∑

∞k= j ε ′k2−k/p sin

(2kπs

)) ∣∣∣∣∣Now consider what happens for k > j. Then sin

(2kπ

i2 j+1

)= sin(mπ) = 0for some integer

m. Thus the whole mess reduces to∣∣∣∣(ε j− ε′j)

2− j/p sin(

2 jπ (i+1)2 j+1

)−(ε j− ε

′j)

2− j/p sin(

2 jπi2 j+1

)∣∣∣∣=

∣∣∣∣(ε j− ε′j)

2− j/p sin(

π (i+1)2

)−(ε j− ε

′j)

2− j/p sin(

πi2

)∣∣∣∣= 2

(2− j/p

)

568 CHAPTER 21. BANACH SPACES+ Y |2¥Psin (24a) 2-4? sin (2x5) |k> log, (t—s)|Ift = 1 and s =0, there is really nothing to show because then the difference equals 0. Thereis also nothing to show if f = s. From now on, 0 <t—s < 1. Let ko be the largest integerwhich is less than or equal to |log, (t—s)| = —log, (t—s). Note that —log(t—s) > 0because 0 <t—s < 1. Thenle(-fi9| < ¥ j2-* sin (2'r) —2-*/P sin (2'xs)|k<ko+ y jaw sin (2'xr) —2-*/P sin (2's) |k>ko< Y 2Pakn|r—s|+ Yo 2-*/P2k<ko k>koNow ko < —log, (t—s) < kg +1 and so —ko > log, (t—s) > —(kg +1). Hence 2~* >22 2|t —s| > 2-02—! and so 2~*0/P > |t — s|t/? > 2-'o/p2—!/P_ Using this in the sums,Ife (t) — fe (s)| <|t—s|Cp + Y 2-*/P2ko/pgholrgk>ko<|t—s|Cp+ Y, 2-#/P2ho/e (2"/? ir—s|"/) 2k>koIAIts] Cp-+ J 2-H? (21/0 jp — |'/P) 9k>ko< C,|t—s|+ (2't1/”) y 2-4? |p — sllk=1= C,|t—s|4+Dp|t—s|'/? <C,|t—s|'/? +D, |t—s|!/?Thus fz is indeed 1 /p Holder continuous.Now consider ¢ 4 e’. Suppose the first discrepancy in the two sequences occurs with€;. Thus one is 1 and the other is —1. Let tf = Ht S= onIfe (t) — fe (8) — (fer (t) — fer (8) =Ye €x2*/? sin (2a) — De €x2-*/? sin (2*z5)= (LR jek2 MP sin (24a) — Pe je,2-Y/” sin (2s) )i2i+1Now consider what happens for k > j. Then sin (2! 1 ) = sin(mz) = Ofor some integerm. Thus the whole mess reduces to_y, .. (24a(i+1) ay. (2 ti(e;—e,)2 iesin (2D) — (ej e4)2 vesin (3)jy. (G+) jp. [i(e;—e;)2 j/P sin (75 )-(ej-e))2 JIP sin (3)=~ 2 (2//”)