22.5. COMPACT OPERATORS IN HILBERT SPACE 591

=∞

∑j=1

(x,e j)∞

∑i=1

(Ae j,ei)ei =∞

∑j=1

(x,e j)Ae j

Next consider the claim that A is compact. Let CA ≡(

∑∞j=1∣∣(Ae j,e j)

∣∣)1/2. Let An be

defined by An ≡ ∑∞j=1 ∑

ni=1 (Aei,e j)(ei⊗ e j) . Then An has values in span(e1, · · · ,en) and

so it must be a compact operator because bounded sets in a finite dimensional space mustbe precompact. Then

|(Ax−Anx,y)|=

∣∣∣∣∣ ∞

∑j=1

∑i=n+1

(Aei,e j)(y,e j)(ei,x)

∣∣∣∣∣=∣∣∣∣∣ ∞

∑j=1

(y,e j)∞

∑i=n+1

(Aei,e j)(ei,x)

∣∣∣∣∣≤

∣∣∣∣∣ ∞

∑j=1

∣∣(y,e j)∣∣(Ae j,e j)

1/2∞

∑i=n+1

(Aei,ei)1/2 |(ei,x)|

∣∣∣∣∣≤

(∞

∑j=1

∣∣(y,e j)∣∣2)1/2(

∑j=1

∣∣(Ae j,e j)∣∣)1/2

·

(∞

∑i=n+1

|(x,ei)|2)1/2(

∑i=n+1

|(Aeiei)|)1/2

≤ ∥y∥∥x∥CA

(∞

∑i=n+1

|(Aei,ei)|)1/2

and this shows that if n is sufficiently large, it follows that |((A−An)x,y)| ≤ ε ∥x∥∥y∥ sofor such n,∥A−An∥< ε. Therefore, limn→∞ ∥A−An∥= 0 and so A is the limit in operatornorm of finite rank bounded linear operators, each of which is compact. Therefore, A isalso compact. ■

Definition 22.5.12 The trace of a nuclear operator A ∈L (H,H) such that A≥ 0is defined to equal ∑

∞k=1 (Aek,ek) where {ek} is an orthonormal basis for the separable

Hilbert space, H.

Theorem 22.5.13 Definition 22.5.12 is well defined and equals ∑∞j=1 λ j where the

λ j are the nonnegative eigenvalues of A.

Proof: Suppose {uk} be the basis of eigenvectors of the Hilbert Schmidt theorem Thenek = ∑

∞j=1 u j (ek,u j) . By Lemma 22.5.11 A is compact and so by the Hilbert Schmidt the-

orem, Theorem 22.5.3, A = ∑∞k=1 λ kuk⊗uk where the uk are the orthonormal eigenvectors

of A which form a complete orthonormal set. Then

∑k=1

(Aek,ek) =∞

∑k=1

(A(ek) ,

∑i=1

ui (ek,ui)

)=

∑k=1

∑i=1

(A(ek) ,ui)(ek,ui)

=∞

∑k=1

∑i=1

(ek,Aui)(ek,ui) =∞

∑k=1

∑i=1

(ek,

∑j=1

(Aui,u j)u j

)(ek,ui)

=∞

∑k=1

∑i

∑j(Aui,u j)(ek,u j)(ui,ek) =

∑k=1

∑i

∑j

λ jδ i j (ek,u j)(ui,ek)

=∞

∑k=1

∑i=1

λ i |(ui,ek)|2 =∞

∑i=1

λ i

∑k=1|(ui,ek)|2 =

∑i=1

λ i ∥ui∥2 =∞

∑i=1

λ i ■

22.5. COMPACT OPERATORS IN HILBERT SPACE 591co= L lve) E ldeseie = Yves )Ae;i=11/2Next consider the claim that A is compact. Let C4 = (re |(Ae;,e;) ) . Let A, bedefined by An = Y7_1 LL, (Aei,e;) (ei @ ej). Then A, has values in span(e1,--- ,e@n) andso it must be a compact operator because bounded sets in a finite dimensional space mustbe precompact. Then|(Ax —Anx,y)| (eive;) (y, ej) (ei,¥ita-E.2co¥ |(.e))| (Aeje)"2 EE (ene)! |(e,2)|J=1 i=n+11/2 1/2 wo 1/2 - 1/2ioea? ( (aera (Eton?) @a))1 j=l i=n+l i=n+1. (Jco 1/2< rhnica ( » evei=n+1and this shows that if n is sufficiently large, it follows that |((A —A,)x,y)| < € ||x|| ||y|| sofor such n, ||A —A,|| < €. Therefore, limy_,.. ||A — An|| = 0 and so A is the limit in operatornorm of finite rank bounded linear operators, each of which is compact. Therefore, A isalso compact. Hf+i=n+1=|L y, ej) y (Ae;,e;) (€i,x)jal<ln eekifsDefinition 22.5.12 The trace of a nuclear operator A € YL (H,H) such that A >0is defined to equal Yf_, (Aex,ex) where {e,} is an orthonormal basis for the separableHilbert space, H.Theorem 22.5.13 Definition 22.5.12 is well defined and equals Yi A ; where theA ; are the nonnegative eigenvalues of A.Proof: Suppose {u;} be the basis of eigenvectors of the Hilbert Schmidt theorem Thenek = Lj—1 Uj (ex, uj). By Lemma 22.5.11 A is compact and so by the Hilbert Schmidt the-orem, Theorem 22.5.3, A = )P_, Axuz @ ug where the u, are the orthonormal eigenvectorsof A which form a complete orthonormal set. Then(1 (ex), Dui (ex, ud »)- yy1 i=l kali(ex, Aui) (ex, ui) =y y sil.k=1i=1MsMsms(Aex, ex) = Uj) (ek, Ui)>lIkll=IMsMs(Auj,u;) u 3 Ck U. Uj)ll=ll_j=!co_ (Au, j) (ek, uj) ( Ui, ek) ~2d Oi; (ex, Uj) (uj, ek)k=1 i jlIMs~M!>lluncoAil(ui,ex)? = Yai y |(ui,ex) |? = Yai \!uil|” = Ai ai=1 i=1i=l k=1llMsMs: -™4>Illlun