694 CHAPTER 24. THE BOCHNER INTEGRAL

Now is a general statement about norms, indicating that the Lp norm is no more than aconstant times the norm involving the maximum.(∫

∥v(x)∥pW dx

)1/p

≤ maxx∈Gε

∥v(x)∥W m(Gε

)≡ m

(Gε

)∥v∥W,∞

It follows from Theorem 24.11.3 that for every η > 0, there exists a η net in C(Gε ;W

)for

Aεn, this for each n. Then from the above inequality, it follows that for each η , there existsan η net in Lp

(Gε ;W

)for Aεn.

Recall also, from the assumption that the theorem is not true, Aε ≡{

uXGε: u ∈A

}has no η/2 net in Lp

(Gε ;W

). Next I estimate the distance in Lp

(Gε ;W

)between uXGε

for u ∈A and uXGε∗ψn. The idea is that for each n,Aεn has an η/8 net and for n large

enough, uXGεis close to uXGε

∗ψn so a contradiction will result if the functions of thesecond sort are totally bounded while those functions of the first sort don’t. Assume alwaysthat 1/n < dist

(Gε ,Ω

C). Using Minkowski’s inequality,∥∥∥uXGε

−uXGε∗ψn

∥∥∥Lp(Gε ;W)

=

(∫Rm

∥∥∥∥∫Rm

(uXGε

(x)−uXGε(x−y)

)ψn (y)dy

∥∥∥∥p

Wdx)1/p

≤∫

B(0,1/n)ψn (y)

(∫Rm

∥∥∥(uXGε(x)−uXGε

(x−y))∥∥∥p

Wdx)1/p

dy

≤∫

B(0,1/n)ψn (y)

(∫Rm∥(ũ(x)− ũ(x−y))∥p

W dx)1/p

dy

≤∫

B(0,1/n)ψn (y)

( ∫Rm

η

50(2p−1)M∥ũ(x)− ũ(x−y)∥p

V

+Cη ∥ũ(x)− ũ(x−y)∥pU dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)

( ∫Rm

η

50(2p−1)M2p−12

(∥ũ(x)∥p

V

)dx

+Cη

∫Rm ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)

( ∫Rm

η

25M

(∥ũ(x)∥p

V

)dx

+∫Rm Cη ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)

25+∫Rm

Cη ∥ũ(x)− ũ(x−y)∥pU dx

)1/p

dy

By assumption 24.42, there exists N such that if n≥ N, then |y|< 1n and for all u ∈A ,∥∥∥uXGε

−uXGε∗ψn

∥∥∥Lp(Gε ;W)

≤∫

B(0, 1n )

ψn (y)

25+

η p

8p

)1/p

dy

≤∫

B(0, 1n )

ψn (y)(

η

25+

η

8

)dy =

η

25+

η

8

Recall η < 1.

694 CHAPTER 24. THE BOCHNER INTEGRALNow is a general statement about norms, indicating that the L? norm is no more than aconstant times the norm involving the maximum.([tm(e)theae) ” < max ve) lm Ge) =m Ce lrIt follows from Theorem 24.11.3 that for every 7 > 0, there exists a 7 net inC (Ge; W) forDen, this for each 7 n. Then from the above inequality, it follows that for each 1), there existsan 7) net in L? (Ge;W) for en.Recall also, from the assumption that the theorem is not true, 2% = {u 2g, Ue Dh \has no 7/2 net in L? (Ge; Ww). Next I estimate the distance in L? (Ge;W) between u2Gfor u € & and u2%G* W,,. The idea is that for each n, %, has an 7/8 net and for n largeenough, u.2G- is close to u.2G_* W,, so a contradiction will result if the functions of thesecond sort are totally bounded while those functions of the first sort don’t. Assume alwaysthat 1/n < dist (Ge, QC). Using Minkowski’s inequality,2 —UGE*W, (Ge)[. (u2Ge(@) —u2Ge(@—y)) Valw)ay(|<bean Vn (y) (f..fo va(o)([.,\l@2) awl ae) aPp 1/pax)w(u%z (x) —u2G, (x — y)) if ax) "? dy~ 1/< | Jam SRE amon a(x) —a(e—y)\ \ "|boo ayn na Nate —ai(ax—y)||P, dx\/p< | val Jim 50( > 50(P-) > P12 (||ii(a) |I\7) dx ) d- +Cy few a) —ii(w—y)||p dx1< | vatw)( Siam ashq (i (@) II) x > ) yy~ JB(0,4) + Jigm Cn || (ax) — ie Y)lly ax’a (2+ [oc \n(@)—ale—wlae) aBy assumption 24.42, there exists N such that if n > N, then |y| < i and for all u € &,ni ne\i?yy B <ere —utec Vall cacy <A, oY) (35+ Br) dyNLM ye tat< Jovan Ve (35 +3) = 3545Recall n < 1.