700 CHAPTER 24. THE BOCHNER INTEGRAL

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define un (t)≡∑ki=1 uniX[ti−1,ti) (t) , uni ≡ 1

ti−ti−1

∫ titi−1

un (s)ds. The idea is to show thatun approximates un well and then to argue that a subsequence of the {un} is a Cauchysequence yielding a contradiction to 24.51.

Therefore,

un (t)−un (t) =k

∑i=1

un (t)X[ti−1,ti) (t)−k

∑i=1

uniX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality, Lemma 10.15.1, that

∥un (t)−un (t)∥pW =

k

∑i=1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

WX[ti−1,ti) (t)

And so ∫ T

0∥un (t)−un (t)∥p

W dt =k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Wdt

≤k

∑i=1

∫ ti

ti−1

ε

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Edt

+Cε

k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Xdt (24.52)

Consider the second of these. It equals Cε ∑ki=1∫ ti

ti−1

∥∥∥ 1ti−ti−1

∫ titi−1

∫ ts u′n (τ)dτds

∥∥∥p

Xdt.This is

no larger than

≤ Cε

k

∑i=1

∫ ti

ti−1

(1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτds)p

dt

= Cε

k

∑i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

dt =Cε

k

∑i=1

((ti− ti−1)

1/p∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

Since b−ak = ti− ti−1,

= Cε

(k

∑i=1

(b−a

k

)1/p ∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

≤ Cε (b−a)k

(k

∑i=1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

=Cε (b−a)

k

(∥∥u′n∥∥

L1([a,b],X)

)p<

η p

10p

700 CHAPTER 24. THE BOCHNER INTEGRALfor all n ¢ m and the norm refers to L? ([a,b] ;W). Leta= <t) <-++<t=b, t} —t_1 = (b—a) /k.Now define @, (t) = Hn, Bi.) ()s Un; = HG i : Se, Un (Ss) ds. The idea is to show thatUp, approximates u, well and then to argue that a subsequence of the {7,} is a Cauchysequence yielding a contradiction to 24.51.Therefore,M>Un (t) — My (t) =kUn (t) 2; [t;— 1 ti) )— Ltn Ry 1 ti)i=lk k t;Ye [0 04%v i O-L a [mas Fi a9~hi- ti al. un (t) — un (s))ds2in,_, 43) (t)-i=1 i-1It follows from Jensen’s inequality, Lemma 10.15.1, thatk 1 tj petn (t) tin (Pr = Ye [int =ta())d5]) Bisa 0ai 4-1 4-1 WwAnd sor tj tj P[ ||un (t) — tn (t)||y at = y — | (ttn (t) — tn (s))ds|| dt9 fi-1 ti —Tj-1 ti] idk ti 1 ti P< E | Un (t)—Un(s))ds|| dtvl tj —ti-1 G1 ( nl ) n( ) Eke pt 1 t; p+Ce )) / [ (Un (t) —un(s))ds}] dt (24.52)fay tit |G G1 Jy yxConsider the second of these. It equals Ce Y_ Si ;Lp ful (t )dtds|| dt.This isGG ti-1no larger thanoF (AA Pi ie aaa) ar[i Wwotelat) at =Ce¥ (=n [Is lhete)IA= ek ['(Since boa =t;—t-1,k b-a I/p ti ! ° E b-a i fi / "(ECF) "[ btolets) <9" (5 [Ina colt)Ce(b—a) poemST (lelleieain) < tor