730 CHAPTER 26. INDEPENDENCE
26.8 Strong Law of Large NumbersKolmogorov’s inequality is a very interesting inequality which depends on independenceof a set of random vectors. The random vectors have values in Rn or more generally somereal separable Hilbert space.
Lemma 26.8.1 If Y,X are independent random variables having values in a real sep-arable Hilbert space, H with E
(|X|2
),E(|Y |2
)< ∞, then
∫Ω
(X,Y )dP =
(∫Ω
XdP,∫
Ω
Y dP).
Proof: Let {ek} be a complete orthonormal basis. Thus from Theorem 22.4.2,∫Ω
(X,Y )dP =∫
Ω
∞
∑k=1
(X,ek)(Y,ek)dP
Now
∫Ω
∞
∑k=1|(X,ek)(Y,ek)|dP≤
∫Ω
(∑k|(X,ek)|
2
)1/2(∑k|(Y,ek)|
2
)1/2
dP
=∫
Ω
|X| |Y |dP≤(∫
Ω
|X|2 dP)1/2(∫
Ω
|Y |2 dP)1/2
< ∞
and so by Fubini’s theorem and independence ofX,Y ,∫Ω
(X,Y )dP =∫
Ω
∞
∑k=1
(X,ek)(Y,ek)dP =∞
∑k=1
∫Ω
(X,ek)(Y,ek)dP
=∞
∑k=1
∫Ω
(X,ek)dP∫
Ω
(Y,ek)dP =∞
∑k=1
(∫Ω
XdP,ek
)(∫Ω
Y dP,ek
)dP
=
(∫Ω
XdP,∫
Ω
Y dP)
■
Now here is Kolmogorov’s inequality.
Theorem 26.8.2 Suppose {Xk}nk=1 are independent with E (|Xk|)< ∞, E (Xk) =
0. Then for any ε > 0,
P
([max
1≤k≤n
∣∣∣∣∣ k
∑j=1X j
∣∣∣∣∣≥ ε
])≤ 1
ε2
n
∑j=1
E(|Xk|2
).
Proof: Let A=[max1≤k≤n
∣∣∣∑kj=1X j
∣∣∣≥ ε
]. Now let A1≡ [|X1| ≥ ε] and if A1, · · · ,Am
have been chosen,
Am+1 ≡
[∣∣∣∣∣m+1
∑j=1X j
∣∣∣∣∣≥ ε
]∩
m⋂r=1
[∣∣∣∣∣ r
∑j=1X j
∣∣∣∣∣< ε
]