730 CHAPTER 26. INDEPENDENCE

26.8 Strong Law of Large NumbersKolmogorov’s inequality is a very interesting inequality which depends on independenceof a set of random vectors. The random vectors have values in Rn or more generally somereal separable Hilbert space.

Lemma 26.8.1 If Y,X are independent random variables having values in a real sep-arable Hilbert space, H with E

(|X|2

),E(|Y |2

)< ∞, then

∫Ω

(X,Y )dP =

(∫Ω

XdP,∫

Y dP).

Proof: Let {ek} be a complete orthonormal basis. Thus from Theorem 22.4.2,∫Ω

(X,Y )dP =∫

∑k=1

(X,ek)(Y,ek)dP

Now

∫Ω

∑k=1|(X,ek)(Y,ek)|dP≤

∫Ω

(∑k|(X,ek)|

2

)1/2(∑k|(Y,ek)|

2

)1/2

dP

=∫

|X| |Y |dP≤(∫

|X|2 dP)1/2(∫

|Y |2 dP)1/2

< ∞

and so by Fubini’s theorem and independence ofX,Y ,∫Ω

(X,Y )dP =∫

∑k=1

(X,ek)(Y,ek)dP =∞

∑k=1

∫Ω

(X,ek)(Y,ek)dP

=∞

∑k=1

∫Ω

(X,ek)dP∫

(Y,ek)dP =∞

∑k=1

(∫Ω

XdP,ek

)(∫Ω

Y dP,ek

)dP

=

(∫Ω

XdP,∫

Y dP)

Now here is Kolmogorov’s inequality.

Theorem 26.8.2 Suppose {Xk}nk=1 are independent with E (|Xk|)< ∞, E (Xk) =

0. Then for any ε > 0,

P

([max

1≤k≤n

∣∣∣∣∣ k

∑j=1X j

∣∣∣∣∣≥ ε

])≤ 1

ε2

n

∑j=1

E(|Xk|2

).

Proof: Let A=[max1≤k≤n

∣∣∣∑kj=1X j

∣∣∣≥ ε

]. Now let A1≡ [|X1| ≥ ε] and if A1, · · · ,Am

have been chosen,

Am+1 ≡

[∣∣∣∣∣m+1

∑j=1X j

∣∣∣∣∣≥ ε

]∩

m⋂r=1

[∣∣∣∣∣ r

∑j=1X j

∣∣∣∣∣< ε

]

730 CHAPTER 26. INDEPENDENCE26.8 Strong Law of Large NumbersKolmogorov’s inequality is a very interesting inequality which depends on independenceof a set of random vectors. The random vectors have values in R” or more generally somereal separable Hilbert space.Lemma 26.8.1 If Y,X are independent random variables having values in a real sep-arable Hilbert space, H with E (Ix!’) ,E (iv?) <0, then[(x.Yar = ( [xan [var).Proof: Let {e;} be a complete orthonormal basis. Thus from Theorem 22.4.2,/ (X,Y) dP = / Y (X,ex) (Y,e,) dPa Q R=)Now1/2 1/2[Yixewmenlars | [Eiesen?] (Eisen?) aPk=1 k1/2 1/2=| |X||Y]aP < (/ xPar) (/ \v Pap) <0Q Q Qand so by Fubini’s theorem and independence of X,Y,>(X,Y)aP = | Y (Xen) (Hedr=¥ [Xen Year¥ [evar [ oregar=¥ ( | xarer) ( |, vanes) ap- ( [, xan. [, var) =Now here is Kolmogorov’s inequality.Theorem 26.8.2 suppose {X;};_, are independent with E (|X x|) <°, E(X,) =0. Then for any € > 0,lJ 2Se <@ LE (Xi ).J=rh x,| > e| Now let A; = [|X| > e] and if Ay,--» Am<4]kP Xx;1Proof: Let A = [maxi <t<nAmt = Iphave been chosen,m+1LX;slyxj=l