27.7. CONVOLUTION AND SUMS 757
(µ ∗ν)(A)≡∫
Eν (A− x)dµ (x) .
Therefore, if s is a simple function, s(x) = ∑nk=1 ckXAk (x) ,∫
Esd (µ ∗ν) =
n
∑k=1
ck
∫E
ν (Ak− x)dµ (x) =∫
E
n
∑k=1
ckν (Ak− x)dµ (x)
=∫
E
n
∑k=1
ckXAk−x (y)dν (y)dµ (x) =∫
E
∫E
s(x+ y)dν (y)dµ (x)
Approximating with simple functions it follows that whenever f is bounded and measurableor nonnegative and measurable,∫
Ef d (µ ∗ν) =
∫E
∫E
f (x+ y)dν (y)dµ (x) (27.14)
Therefore, letting Z = X +Y, and λ the distribution of Z, it follows from independence ofX and Y that for t∗ ∈ E ′,
φ λ (t∗)≡ E
(eit∗(Z)
)= E
(eit∗(X+Y )
)= E
(eit∗(X)
)E(
eit∗(Y ))
But also, it follows from 27.14
φ (µ∗ν) (t∗) =
∫E
eit∗(z)d (µ ∗ν)(z) =∫
E
∫E
eit∗(x+y)dν (y)dµ (x)
=∫
E
∫E
eit∗(x)eit∗(y)dν (y)dµ (x)
=
(∫E
eit∗(y)dν (y))(∫
Eeit∗(x)dµ (x)
)= E
(eit∗(X)
)E(
eit∗(Y ))
Since φ λ (t∗) = φ (µ∗ν) (t
∗) , it follows λ = µ ∗ν .Note the last part of this argument shows the characteristic function of a convolution
equals the product of the characteristic functions. ■