760 CHAPTER 28. THE NORMAL DISTRIBUTION

Proof: Let R be an orthogonal transformation such that

RΣR∗ = D = diag(σ

21, · · · ,σ2

p), σ i > 0.

Changing the variable by x−m= R∗y,

E (X) ≡∫Rpxe

−12 (x−m)∗Σ−1(x−m)dx

(1

(2π)p/2 det(Σ)1/2

)

=∫Rp

(R∗y+m)e−12y∗D−1ydy

(1

(2π)p/2∏

pi=1 σ i

)

= m∫Rp

e−12y∗D−1ydy

(1

(2π)p/2∏

pi=1 σ i

)=m

by Fubini’s theorem and the easy to establish formula 1√2πσ

∫R e−

y2

2σ2 dy = 1,(let u = y/σ),

Next letM ≡ E

((X−m)(X−m)∗

)Thus, changing the variable as above by x−m= R∗y

M =∫Rp

(x−m)(x−m)∗ e−12 (x−m)∗Σ−1(x−m)dx

(1

(2π)p/2 det(Σ)1/2

)

= R∗∫Rpyy∗e−

12y∗D−1ydy

(1

(2π)p/2∏

pj=1 σ j

)R

If i ̸= j, (RMR∗)i j =∫Rp yiy je−

12y∗D−1ydy

(1

(2π)p/2∏

pk=1 σ k

)= 0 so RMR∗ is a diagonal

matrix.

(RMR∗)ii =∫Rp

y2i e−

12y∗D−1ydy

(1

(2π)p/2∏

pj=1 σ j

).

Using Fubini’s theorem and the easy to establish equations,

1√2πσ

∫R

e−y2

2σ2 dy = 1,1√

2πσ

∫R

y2e−y2

2σ2 dy = σ2,

it follows (RMR∗)ii = σ2i . Hence RMR∗ = D and so M = R∗DR = Σ. ■

Theorem 28.1.3 SupposeX1 ∼ Np (m1,Σ1) ,X2 ∼ Np (m2,Σ2) and the two ran-dom vectors are independent. Then

X1 +X2 ∼ Np (m1 +m2,Σ1 +Σ2). (28.1)

Also, ifX ∼ Np (m,Σ) then −X ∼ Np (−m,Σ) . Furthermore, ifX ∼ Np (m,Σ) then

E(eit·X)= eit·me−

12 t∗Σt (28.2)

If a is a constant andX ∼ Np (m,Σ) , then aX ∼ Np(am,a2Σ

).

760 CHAPTER 28. THE NORMAL DISTRIBUTIONProof: Let R be an orthogonal transformation such thatRER* = D = diag (oj,--- ,0%) , 0; > 0.Changing the variable by x —m = R*y,7 a 1E(X) = / mew (eam) Elem) gf(*) RP (21)?! det (=)!/?1) xp 1= Rry+m)e 24? Y¥dy | ———__[8 vm) (cannes)— 1=m ew » i p/2yP —™mRP (27) T=, Oj2by Fubini’s theorem and the easy to establish formula Tes fre 2 dy =1,(letu=y/o),Next letM=E ((X —m)(X—m)*)Thus, changing the variable as above by x —m = R*y* Ss! (a@—m)*z7! (a2—m) 1xr—m)(x—-—m)* e2 dx | ————————i- ( M ) (sor det (=)!/ :R eo yyre 2¥P Udy (M1———_.————_ JR(2m)? Tj Oj )If iF j, (RMR*);; = Jae ye 0? ay (matrix.1 . .ars) = 0 so RMR* is a diagonal° 1) xp-l 1(Rur’), = | yre2¥P Ydy (carne):ii Re’! (2m)?/? van OjUsing Fubini’s theorem and the easy to establish equations,1 / 2 1 7 5e 207d =1, — | e 20*dy=o",270 JR » V 210 R yit follows (RMR*);, = 07. Hence RMR* = D and so M = R*DR =.Theorem 28.1.3 Suppose X, ~ N,(m,21), X2 ~ Ny (M2, 2X2) and the two ran-dom vectors are independent. ThenX,+X.~N,(m,+m2,X1 +22). (28.1)Also, if X ~ Np (m,) then —X ~ N,(—m,2). Furthermore, if X ~ Np (m,xX) thenE (et *) _ gitm ,—xt°Et (28.2)If ais a constant and X ~N,(m,xX), thenaX ~N, (am, a’) .