910 BIBLIOGRAPHY

[23] Gurtin M. An introduction to continuum mechanics, Academic press 1981.

[24] Gromes W. Ein einfacher Beweis des Satzes von Borsuk. Math. Z. 178, pp. 399 -400(1981).

[25] Hardy, G.H., Littlewood, J.E. and Polya, G., Inequalities, Cambridge UniversityPress 1964.

[26] Hewitt E. and Stromberg K. Real and Abstract Analysis, Springer-Verlag, NewYork, 1965.

[27] Heinz, E.An elementary analytic theory of the degree of mapping in n dimensionalspace. J. Math. Mech. 8, 231-247 1959

[28] Hobson E.W., The Theory of functions of a Real Variable and the Theory of Fourier’sSeries V. 1, Dover 1957.

[29] Hocking J. and Young G., Topology, Addison-Wesley Series in Mathematics, 1961.

[30] Horn R. and Johnson C., matrix Analysis, Cambridge University Press, 1985.

[31] Hu S. and Papageorgiou, N. Handbook of Multivalued Analysis, Kluwer AcademicPublishers (1997).

[32] Karatzas and Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag,1991.

[33] Kato T. Perturbation Theory for Linear Operators, Springer, 1966.

[34] Kreyszig E. Introductory Functional Analysis With applications, Wiley 1978.

[35] Kuratowski K. and Ryll-Nardzewski C. A general theorem on selectors, Bull. Acad.Pol. Sc., 13, 397-403.

[36] Kuttler K.L., Modern Analysis CRC Press 1998.

[37] Kuttler K. L., Basic Analysis, Rinton

[38] Kuttler K. L., Linear Algebra and Analysis, web page Web Page

[39] Marsden J. E. and Hoffman J. M., Elementary Classical Analysis, Freeman, 1993.

[40] McShane E. J. Integration, Princeton University Press, Princeton, N.J. 1944.

[41] Munkres, James R.,Topology A First Course, Prentice Hall, Englewood Cliffs, NewJersey 1975

[42] Natanson I. P., Theory Of Functions Of A Real Variable, Fredrick Ungar PublishingCo. 1955.

[43] Naylor A. and Sell R., Linear Operator Theory in Engineering and Science, HoltRinehart and Winston, 1971.

[44] Øksendal Bernt Stochastic Differential Equations, Springer 2003.