910 BIBLIOGRAPHY
[23] Gurtin M. An introduction to continuum mechanics, Academic press 1981.
[24] Gromes W. Ein einfacher Beweis des Satzes von Borsuk. Math. Z. 178, pp. 399 -400(1981).
[25] Hardy, G.H., Littlewood, J.E. and Polya, G., Inequalities, Cambridge UniversityPress 1964.
[26] Hewitt E. and Stromberg K. Real and Abstract Analysis, Springer-Verlag, NewYork, 1965.
[27] Heinz, E.An elementary analytic theory of the degree of mapping in n dimensionalspace. J. Math. Mech. 8, 231-247 1959
[28] Hobson E.W., The Theory of functions of a Real Variable and the Theory of Fourier’sSeries V. 1, Dover 1957.
[29] Hocking J. and Young G., Topology, Addison-Wesley Series in Mathematics, 1961.
[30] Horn R. and Johnson C., matrix Analysis, Cambridge University Press, 1985.
[31] Hu S. and Papageorgiou, N. Handbook of Multivalued Analysis, Kluwer AcademicPublishers (1997).
[32] Karatzas and Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag,1991.
[33] Kato T. Perturbation Theory for Linear Operators, Springer, 1966.
[34] Kreyszig E. Introductory Functional Analysis With applications, Wiley 1978.
[35] Kuratowski K. and Ryll-Nardzewski C. A general theorem on selectors, Bull. Acad.Pol. Sc., 13, 397-403.
[36] Kuttler K.L., Modern Analysis CRC Press 1998.
[37] Kuttler K. L., Basic Analysis, Rinton
[38] Kuttler K. L., Linear Algebra and Analysis, web page Web Page
[39] Marsden J. E. and Hoffman J. M., Elementary Classical Analysis, Freeman, 1993.
[40] McShane E. J. Integration, Princeton University Press, Princeton, N.J. 1944.
[41] Munkres, James R.,Topology A First Course, Prentice Hall, Englewood Cliffs, NewJersey 1975
[42] Natanson I. P., Theory Of Functions Of A Real Variable, Fredrick Ungar PublishingCo. 1955.
[43] Naylor A. and Sell R., Linear Operator Theory in Engineering and Science, HoltRinehart and Winston, 1971.
[44] Øksendal Bernt Stochastic Differential Equations, Springer 2003.