5.19. EXERCISES 151

Example 5.18.1 Suppose you have $100 and you put it in a savings account which pays6% compounded continuously. How much will you have at the end of 4 years?

From the above discussion, this would be 100e(.06)4 = 127.12. Thus, in 4 years, youwould gain interest of about $27.

5.19 Exercises1. Find the limits.

(a) limx→03x−4sin3x

tan3x

(b) limx→ π2 − (tanx)x−(π/2)

(c) limx→1arctan(4x−4)arcsin(4x−4)

(d) limx→0arctan3x−3x

x3

(e) limx→0+9secx−1−13secx−1−1

(f) limx→03x+sin4x

tan2x

(g) limx→π/2ln(sinx)x−(π/2)

(h) limx→0cosh2x−1

x2

(i) limx→0−arctanx+x

x3

(j) limx→0x8 sin 1

xsin3x

(k) limx→∞ (1+5x)2x

(l) limx→0−2x+3sinx

x

(m) limx→1ln(cos(x−1))

(x−1)2

(n) limx→0+ sin1x x

(o) limx→0 (csc5x− cot5x)

(p) limx→0+3sinx−12sinx−1

(q) limx→0+ (4x)x2

(r) limx→∞x10

(1.01)x

(s) limx→0 (cos4x)(1/x2)

2. Find the following limits.

(a) limx→0+1−

√cos2x

sin4(4√

x).

(b) limx→02x2−25x

sin(

x25

)−sin(3x)

.

(c) limn→∞ n( n√

7−1).

(d) limx→∞

( 3x+25x−9

)x2.

(e) limx→∞

( 3x+25x−9

)1/x.

(f) limn→∞

(cos 2x√

n

)n.

(g) limn→∞

(cos 2x√

5n

)n.

(h) limx→3xx−27x−3 .

(i) limn→∞ cos(

π

√4n2+13n

n

).

(j) limx→∞

 3√x3 +7x2

−√

x2 −11x

.

(k) limx→∞

 5√x5 +7x4

− 3√x3 −11x2

.

(l) limx→∞

(5x2+72x2−11

) x1−x

.

(m) limx→∞

(5x2+72x2−11

) x lnx1−x

.

(n) limx→0+ln(

e2x2+7

√x)

sinh(√

x) .

(o) limx→0+7√x− 5√x9√x− 11√x

.

3. Find the following limits.

5.19. EXERCISES151Example 5.18.1 Suppose you have $100 and you put it in a savings account which pays6% compounded continuously. How much will you have at the end of 4 years?From the above discussion, this would be 100e°)4 = 127.12. Thus, in 4 years, youwould gain interest of about $27.5.19 Exercises1. Find the limits.. 3x—4sin3x(a) lim;+0 “Ba(b) lim,_,z_ (tanx)*(*/”arctan(4x—4)(c) Timy1 arcsin(4x—4)( d) lim,0 arctan. 3x 3x. gsecx—1_4(e) lim, 0+ 38617]. 3x+sin 4x(f) limy0 “Ga(g) lim, 7/2 ae(h) lim,_, S223=! cosh r= 1—aretan X+X(i) limy49 — 3x8 sin + 1(j) lim,0 =,3° Sin3x2. Find the following limits.(a) lim. 0+ Glau(b) limys0 aaa5 SINn| dX(c) limy.0n(W7—1).(2) lime su (3853)(e) limy +o (535(f) limy sc (cos 2)"n(g) limyp—oo (cos 35) .(h) lim,3 37.. . 2(i) limps. Cos (2),3. Find the following limits.(k) Limy- sn (1-5")*(1) lim, 9 3"In(cos(x—1))(m) lim, 1 (x1 P. _ 1(n) lim,y_,9+4 sin* x(0) lim,-40 (esc 5x — cot 5x)3sinx _ 1(p) lim,0+ Sa ysinx —](q) limy04 (4x)(1) Himes(s) limy-s9 (cos4x) 1"). In Or 4s(n) lim,—04 ne)(0) lim, 04 Jae.