200 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVES

Example 8.5.2 Find∫ 1√

x2+7dx.

Let x =√

7tanu so dx =√

7(sec2 u

)du. Making the substitution, consider∫ 1√

7√

tan2 u+1

√7(sec2 u

)du =

∫(secu) du = ln |secu+ tanu|+C

Now the following diagram is descriptive of the above transformation.

x

√7

√7+ x2

u

Using the above diagram, secu =

√7+x2√

7and tanu = x√

7. Therefore, restoring the x

variable,

∫ 1√x2 +3

dx = ln

∣∣∣∣∣√

7+ x2√

7+

x√7

∣∣∣∣∣+C = ln∣∣∣√7+ x2 + x

∣∣∣+C.

Note the constant C changed in going from the top to the bottom line. It is C− ln√

7 but itis customary to simply write this as C because C is arbitrary.

Example 8.5.3 Find∫ (

4x2 +3)1/2 dx.

Let 2x =√

3tanu so 2dx =√

3sec2 (u)du. Then making the substitution,

√3∫ (

tan2 u+1)1/2

√3

2sec2 (u) du =

32

∫sec3 (u) du. (8.5)

Now use integration by parts to obtain∫sec3 (u) du =

∫sec2 (u)sec(u) du

= tan(u)sec(u)−∫

tan2 (u)sec(u) du

= tan(u)sec(u)−∫ (

sec2 (u)−1)

sec(u) du

= tan(u)sec(u)+∫

sec(u) du−∫

sec3 (u) du

= tan(u)sec(u)+ ln |sec(u)+ tan(u)|−∫

sec3 (u) du

Therefore,

2∫

sec3 (u) du = tan(u)sec(u)+ ln |sec(u)+ tan(u)|+C

200 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVESExample 8.5.2 Find [ JexLet x = V7tanu so dx = V7 (sec? u) du. Making the substitution, consider1 e| SN (se?) du= | (secu) du = In|secu+tanu|+CJ7Vtan2ut 1Now the following diagram is descriptive of the above transformation.T+x2 xv7Using the above diagram, secu = is and tanu = a Therefore, restoring the xvariable,1 VI+x2 xdx =1n + — +C=In| T+ +3] +C./ Vx2+3 v7 v7Note the constant C changed in going from the top to the bottom line. It is C— In V7 but itis customary to simply write this as C because C is arbitrary.Example 8.5.3 Find [ (4x2 +3)" dx.Let 2x = /3tanu so 2dx = V3 sec” (u) du. Then making the substitution,3 3v3 | (tan w+ 1) "2 cs sec” (u) du = 5 [sxc (u) du. (8.5)Now use integration by parts to obtainJove’ (u) du= [ see? (u) sec (u) du= tan(u)sec(u) — / tan? (uw) sec (w) du= tan(u)sec(u) — / (sec? (uw) — 1) sec (u) du~ tan(u)sec(u) + / sec (u) du— / sec? (uw) du~ tan(u) sec (uw) +In|sec (w) + tan (w)| — / sec? (u) duTherefore,2 | sec? (uw) du = tan (w) sec (u) + In |sec (uw) + tan (u)| +C