202 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVES

Example 8.5.5 Find∫ √

3−5x2 dx.

In this example, let√

5x =√

3sin(u) so√

5dx =√

3cos(u)du. The reason this mightbe a good idea is that it will get rid of the square root sign as shown below. Making thesubstitution, leads to

32√

5u+

3√5

sin(2u)+C =3

2√

5u+

32√

5sinucosu+C

The appropriate diagram is the following.

√5x

√3−5x2

√3

u

From the diagram, sin(u) =√

5x√3

and cos(u) =√

3−5x2√

3. Therefore, changing back to x,∫ √

3−5x2 dx =310

√5arcsin

(13

√15x)+

12

x√(3−5x2)+C

Example 8.5.6 Find∫ √

5x2 −3dx.

In this example, let√

5x =√

3sec(u) so√

5dx =√

3sec(u) tan(u)du. Then changingthe variable, consider

√3∫ √

sec2 (u)−1

√3√5

sec(u) tan(u) du =3√5

∫tan2 (u)sec(u) du

=3√5

[∫sec3 (u) du−

∫sec(u) du

]Now from 8.6, this equals

3√5

[12[tan(u)sec(u)+ ln |sec(u)+ tan(u)|]− ln |tan(u)+ sec(u)|

]+C

=3

2√

5tan(u)sec(u)− 3

2√

5ln |sec(u)+ tan(u)|+C.

Now it is necessary to change back to x. The diagram is as follows.

√5x2 −3

√3

√5x

u

Therefore, tan(u) =√

5x2−3√3

and sec(u) =√

5x√3

and so∫ √5x2 −3dx =

12

(√5x2 −3

)x− 3

10

√5ln∣∣∣∣√5x+

√(−3+5x2)

∣∣∣∣+C

202 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVESExample 8.5.5 Find { V3 —5x* dx.In this example, let 5x = V3sin(u) so V/5dx = V3cos (u) du. The reason this mightbe a good idea is that it will get rid of the square root sign as shown below. Making thesubstitution, leads to3 375" + gsin Qu) +0 = =The appropriate diagram is the following.3u+ —=sinucosu+C2V53 — 5x2From the diagram, sin (wu) = Oe and cos (u) = ~¥ a . Therefore, changing back to x,1 1[v3 5x2 dx = + = VSaresin (jv Sx) + 5* (3 —5x?) +CExample 8.5.6 Find { 5x? —3dx.In this example, let 5x = V/3sec (u) so V5dx = V3 sec (u) tan (u) du. Then changingthe variable, consider2(u) -1¥3 _v3 [ sec? (u) ~ Legg sec (u u)tan(u) du = —z f tan? (u) see (u) du- z [sec w) du [ see(u) au|Now from 8.6, this equals8 E [tan (u) sec (1) +In |sec (uz) + tan (w)|] —In [tan (1) + sec | LC= agin u) sec (u) — 5 Ince (u) + tan (a) +C.Now it is necessary to change back to x. The diagram is as follows.V5x 5x? —3v3Therefore, tan (uv) = 1 and sec (u) = we and so1 3[ V3e- 3dx= 5 (V52 —3)x— = V5In V5x+4/(-3+5x2)|+C