382 CHAPTER 18. LINEAR FUNCTIONS

Now denote by Pi j the elementary matrix which comes from the identity from switchingrows i and j. From what was just explained and Proposition 18.1.24,

Pi j



......

...ai1 ai2 · · · aip...

......

a j1 a j2 · · · a jp...

......

=



......

...a j1 a j2 · · · a jp

......

...ai1 ai2 · · · aip...

......

This has established the following lemma.

Lemma 18.2.5 Let Pi j denote the elementary matrix which involves switching the ith

and the jth rows. ThenPi jA = B

where B is obtained from A by switching the ith and the jth rows.

Example 18.2.6 Consider the following. 0 1 01 0 00 0 1

 a bg de f

=

 g da be f

Next consider the row operation which involves multiplying the ith row by a nonzero

constant, c. The elementary matrix which results from applying this operation to the ith rowof the identity matrix is of the form

. . . 01

c1

0. . .

Now consider what this does to a column vector.

. . . 01

c1

0. . .





...vi−1vi

vi+1...

=



...vi−1cvi

vi+1...

Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by thenonzero constant, c. Then from what was just discussed and Proposition 18.1.24,

E (c, i)



......

...a(i−1)1 a(i−1)2 · · · a(i−1)p

ai1 ai2 · · · aipa(i+1)1 a(i+1)2 · · · a(i+1)p

......

...

=



......

...a(i−1)1 a(i−1)2 · · · a(i−1)p

cai1 cai2 · · · caipa(i+1)1 a(i+1)2 · · · a(i+1)p

......

...

