18.3. EXERCISES 395
24. Let A =
(2 1−1 3
).Find A−1 if possible. If A−1 does not exist, determine why.
25. Let A =
(0 15 3
).Find A−1 if possible. If A−1 does not exist, determine why.
26. Let A =
(2 13 0
). Find A−1 if possible. If A−1 does not exist, determine why.
27. Let A =
(2 14 2
).Find A−1 if possible. If A−1 does not exist, determine why.
28. Let A be a 2× 2 matrix which has an inverse. Say A =
(a bc d
). Find a formula
for A−1 in terms of a,b,c,d.
29. Let
A =
1 2 32 1 41 0 2
.
Find A−1 if possible. If A−1 does not exist, determine why.
30. Let
A =
1 0 32 3 41 0 2
.
Find A−1 if possible. If A−1 does not exist, determine why.
31. Let
A =
1 2 32 1 44 5 10
.
Find A−1 if possible. If A−1 does not exist, determine why.
32. Let
A =
1 2 0 21 1 2 02 1 −3 21 2 1 2
Find A−1 if possible. If A−1 does not exist, determine why.
33. Write
x1 − x2 +2x3
2x3 + x13x3
3x4 +3x2 + x1
in the form A
x1x2x3x4
where A is an appropriate matrix.
34. Write
x1 +3x2 +2x3
2x3 + x16x3
x4 +3x2 + x1
in the form A
x1x2x3x4
where A is an appropriate matrix.