404 CHAPTER 18. LINEAR FUNCTIONS

(c)

0 1 0 2 1 2 20 3 2 12 1 6 80 1 1 5 0 2 30 2 1 7 0 3 4



(d)

0 1 0 2 0 1 00 3 2 6 0 5 40 1 1 2 0 2 20 2 1 4 0 3 2



(e)

0 1 0 2 1 1 20 3 2 6 1 5 10 1 1 2 0 2 10 2 1 4 0 3 1



6. Suppose A is an m× n matrix. Explain why the rank of A is always no larger thanmin(m,n) .

7. A matrix A is called a projection if A2 = A. Here is a matrix. 2 0 21 1 2−1 0 −1

Show that this is a projection. Show that a vector in the column space of a projectionmatrix is left unchanged by multiplication by A.

8. Let H denote span((

12

),

(24

),

(13

)). Find the dimension of H and deter-

mine a basis.

9. Let H denote span

 120

 ,

 240

 ,

 131

 ,

 011

 . Find the dimension of

H and determine a basis.

10. Let H denote span

 120

 ,

 140

 ,

 131

 ,

 011

 . Find the dimension of

H and determine a basis.

11. Let M ={u= (u1,u2,u3,u4) ∈ R4 : u3 = u1 = 0

}. Is M a subspace? Explain.

12. Let M ={u= (u1,u2,u3,u4) ∈ R4 : u3 ≥ u1

}. Is M a subspace? Explain.

13. Let w ∈ R4 and let M ={u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0

}. Is M a subspace?

Explain.

14. Let M ={u= (u1,u2,u3,u4) ∈ R4 : ui ≥ 0 for each i = 1,2,3,4

}. Is M a subspace?

Explain.

15. Let w,w1 be given vectors in R4 and define

M ={u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0 and w1 ·u= 0

}.

Is M a subspace? Explain.

16. Let M ={u= (u1,u2,u3,u4) ∈ R4 : |u1| ≤ 4

}. Is M a subspace? Explain.

4046.10.11.12.13.14.15.16.CHAPTER 18. LINEAR FUNCTIONS0102122 0102112~@ {2322168 @ {2326151o!]o11 5 02 3 Oo) o11202 10217 03 4 021403 1010201 0032605 4Mlo1120220214032Suppose A is an m X n matrix. Explain why the rank of A is always no larger thanmin (m,n).A matrix A is called a projection if A* = A. Here is a matrix.2 0 21 tl 2-1 0 -!1Show that this is a projection. Show that a vector in the column space of a projectionmatrix is left unchanged by multiplication by A.. Let H denote span (( , ) ; ( ’ ) ; ( ; )) . Find the dimension of H and deter-mine a basis.1 2 1 0Let H denote span 27, 47,1 3 7,] 1 . Find the dimension of0 0 1 1H and determine a basis.1 1 1Let H denote span 2), 4 7,4 3 J],] 1 . Find the dimension of0 0 1 1H and determine a basis.Let M = {u = (u1,u2,u3,u4) € R* : u3 =u; =0}. Is Ma subspace? Explain.Let M = {w= (u1,u2,U3,u4) € R* : uz > u,}. Is M a subspace? Explain.Let w € R* and let M = {u = (uy ,U2,U3,U4) € R*:w-u= oO}. Is M a subspace?Explain.Let M = {u = (uj,u2,U3,U4) € R* : u; > 0 for each i= 1,2,3,4}. Is M a subspace?Explain.Let w, wy be given vectors in R* and defineM= {u= (uy, U2, U3, U4) ER*:w-w=O0and w -u=0}.Is M a subspace? Explain.Let M = {u = (uy, u2,U3,u4) € Rt: |uy| < 4} . Is M a subspace? Explain.