19.9. EXERCISES 425

Example 19.8.7 Here is a symmetric matrix which has eigenvalues 6,−12,18

A =

 1 −4 13−4 10 −413 −4 1

Find a matrix U such that UT AU is a diagonal matrix.

From the above explanation the columns of this matrix U are eigenvectors of unit lengthand in fact this is sufficient to obtain the matrix. After doing row operations to find theeigenvectors and then dividing each by its magnitude, you obtain 1 −4 13

−4 10 −413 −4 1

 16

√6

13

√6

16

√6

=

√

62√

6√6

= 6

 16

√6

13

√6

16

√6

 1 −4 13

−4 10 −413 −4 1

 − 12

√2

012

√2

=

 6√

20

−6√

2

=−12

 − 12

√2

012

√2

 1 −4 13

−4 10 −413 −4 1

 13

√3

− 13

√3

13

√3

=

 6√

3−6

√3

6√

3

= 18

 13

√3

− 13

√3

13

√3

Thus the matrix of interest is

U =

 16

√6 − 1

2

√2 1

3

√3

13

√6 0 − 1

3

√3

16

√6 1

2

√2 1

3

√3

Then 1

6

√6 − 1

2

√2 1

3

√3

13

√6 0 − 1

3

√3

16

√6 1

2

√2 1

3

√3

T  1 −4 13−4 10 −413 −4 1

 16

√6 − 1

2

√2 1

3

√3

13

√6 0 − 1

3

√3

16

√6 1

2

√2 1

3

√3



=

 6 0 00 −12 00 0 18

19.9 Exercises1. Let

{u1, · · · ,un}

be a basis for Fn and define a mapping T : Fn → span(v1, · · · ,vr) as follows.

T

(n

∑k=1

akuk

)≡

r

∑k=1

akvk

Explain why this is a linear transformation.