19.9. EXERCISES 429
27. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.
A =
−1 1 11 −1 11 1 −1
.
Hint: One eigenvalue is -2.
28. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.
A =
17 −7 −4−7 17 −4−4 −4 14
.
Hint: Two eigenvalues are 18 and 24.
29. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.
A =
13 1 41 13 44 4 10
.
Hint: Two eigenvalues are 12 and 18.
30. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.
A =
3 0 00 3
212
0 12
32
.
31. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.
A =
2 0 00 5 10 1 5
.
32. Explain why a real matrix A is symmetric if and only if there exists an orthogonalmatrix U such that A =UT DU for D a diagonal matrix.
33. Find an orthonormal basis for the spans of the following sets of vectors.
(a) (3,−4,0) ,(7,−1,0) ,(1,7,1).
(b) (3,0,−4) ,(11,0,2) ,(1,1,7)
(c) (3,0,−4) ,(5,0,10) ,(−7,1,1)