29.4. APPLICATIONS OF THE DIVERGENCE THEOREM 589

yr

ρ Rn−1

Taking slices at height y as shown and using that these slices have n− 1 dimensionalarea equal to αn−1rn−1, it follows

αnρn = 2

∫ρ

0αn−1

2 − y2)(n−1)/2dy

In the integral, change variables, letting y = ρ cosθ . Then

αnρn = 2ρ

nαn−1

∫π/2

0sinn (θ)dθ .

It follows that

αn = 2αn−1

∫π/2

0sinn (θ)dθ . (29.17)

Consequently,

ωn =2nωn−1

n−1

∫π/2

0sinn (θ)dθ . (29.18)

This is a little messier than I would like.∫π/2

0sinn (θ)dθ = −cosθ sinn−1

θ |π/20 +(n−1)

∫π/2

0cos2

θ sinn−2θ

= (n−1)∫

π/2

0

(1− sin2

θ)

sinn−2 (θ)dθ

= (n−1)∫

π/2

0sinn−2 (θ)dθ − (n−1)

∫π/2

0sinn (θ)dθ

Hence

n∫

π/2

0sinn (θ)dθ = (n−1)

∫π/2

0sinn−2 (θ)dθ (29.19)

and so 29.18 is of the form

ωn = 2ωn−1

∫π/2

0sinn−2 (θ)dθ . (29.20)

So what is αn explicitly? Clearly α1 = 2 and α2 = π .

Theorem 29.4.2 αn = πn/2

Γ( n2+1)

where Γ denotes the gamma function, defined for

α > 0 by

Γ(α)≡∫

0e−ttα−1dt.

29.4, APPLICATIONS OF THE DIVERGENCE THEOREM 589r[ y p R’-!Taking slices at height y as shown and using that these slices have n — | dimensionalarea equal to @,_\r"—|, it followspP -1)/2np" = 2 | On-1 (p?—y?)” a dyIn the integral, change variables, letting y= pcos 0. Thenm/2np" = 2p" An_| sin” (0)dé.JOIt follows that1/2On = 2a,-1 | sin” (6)dé. (29.17)0Consequently,2 _, rx/2i= ment | sin" (0) d0. (29.18)n— 0This is a little messier than I would like.1/2 t ain/2 Tm /2 5 5/ sin"(@)d@ = —cos@sin"’ @|, +(n=1) f cos~ 9 sin”~* @0 0n/2_ (n—1) [ (1 — sin? @) sin"? (6) a60m/2n/2— (n—1) | sin" *(6)d0—(n—1) [ sin” (0) d@Hencen/2 n/2nf sin” (0) d@ = (n— i) f sin” > (0)d@ (29.19)0 0and so 29.18 is of the formm/2On = 2On-1 [ sin’ * (0) dé. (29.20)0So what is @, explicitly? Clearly @; =2 and Q@) =7.Theorem 29.4.2 On = Rea) where 1 denotes the gamma function, defined for2a>O0byT'(q@) =| ett? ldt.0