232 CHAPTER 9. BASIC FUNCTION SPACES

This proves claim 1.Claim 2: If g ∈Cc (Rp), then

limr→0

1mp (B(x,r))

∫B(x,r)

|g(y)−g(x)|dmp (y) = 0

Proof: Since g is continuous at x, whenever r is small enough,

1mp (B(x,r))

∫B(x,r)

|g(y)−g(x)|dmp (y)≤1

mp (B(x,r))

∫B(x,r)

ε dmp (y) = ε.

This proves the claim.Now let g ∈Cc (Rp). Then from the above observations about continuous functions in

Claim 2,

mp

([x : limsup

r→0

1mp (B(x,r))

∫B(x,r)

| f (y)− f (x)|dmp (y)> ε

])(9.8)

≤ mp

([x : limsup

r→0

1mp (B(x,r))

∫B(x,r)

| f (y)−g(y)|dmp (y)>ε

2

])+mp

([x : limsup

r→0

1mp (B(x,r))

∫B(x,r)

|g(y)−g(x)|dmp (y)>ε

2

])+mp

([x : |g(x)− f (x)|> ε

2

]).

≤ mp

([M ( f −g)>

ε

2

])+mp

([| f −g|> ε

2

])(9.9)

Now∥ f −g∥1 ≥

∫[| f−g|> ε

2 ]| f −g|dmp ≥

ε

2mp

([| f −g|> ε

2

])and so using Claim 1 and 9.9, 9.8 is dominated by(

2ε+

5p

ε

)∫| f −g|dmp.

But by Theorem 9.4.2, g can be chosen to make the above as small as desired. Hence 9.8is 0.

mp

([limsup

r→0

1mp (B(x,r))

∫B(x,r)

| f (y)− f (x)|dmp (y)> 0])

≤∞

∑k=1

mp

([limsup

r→0

1mp (B(x,r))

∫B(x,r)

| f (y)− f (x)|dmp (y)>1k

])= 0

By completeness of mp this implies[limsup

r→0

1mp (B(x,r))

∫B(x,r)

| f (y)− f (x)|dmp (y)> 0]

is a set of mp measure zero. ■The following corollary is the main result referred to as the Lebesgue Differentiation

theorem.

232 CHAPTER 9. BASIC FUNCTION SPACESThis proves claim 1.Claim 2: If g € C.(R”), then1lim EEA) I gp 89) 8 amp (9) =0Proof: Since g is continuous at x, whenever r is small enough,u 1ri BRA Anan! 82) —80014 0) 5 THAT Ian me) =This proves the claim.Now let g € C, (R”). Then from the above observations about continuous functions inClaim 2,mp ([xstimsup at — vty) —Fo)idmp(n) >e]) 8)r30 Mp<mp( |xstimsup a | F(o) —ata)lamp (0) > 5)tame ( [sstimsup pay han 8-840) > 5])+m ([x sex) £08) > 5]).mn ([Mu-2)> §]) +m ([r-al> $]) °9Nowlf—all, = hy-woe |f —gldm, > mp ({lr—2| S 5)and so using Claim 1 and 9.9, 9.8 is dominated by2 5? °€ + ) | lf — g|dmp.But by Theorem 9.4.2, g can be chosen to make the above as small as desired. Hence 9.8is 0.mp ([limsup aac Jig all) emp) > 0] )< Yim (ftimsup ay |), bela) —F llamo) >] ) =ok=1 r>0 MpBy completeness of m, this implieshimsup IF(¥) - £6) dinp(y) > 01 |r30 Mp (B (x, r)) B(x,r)is a set of mp measure zero. HlThe following corollary is the main result referred to as the Lebesgue Differentiationtheorem.