14.8. THE CAUCHY FORMULA 359

Consider 14.21 which involves identifying the an in terms of the derivatives of f . This isobvious if k = 0. Suppose it is true for k. Then for small h ∈ C,

1h

(f (k) (z+h)− f (k) (z)

)=

1h

∑n=k

n(n−1) · · ·(n− k+1)an

((z+h− z0)

n−k− (z− z0)n−k)

=1h

∑n=k+1

n(n−1) · · ·(n− k+1)an

 ∑n−kj=0

(n− k

j

)h j (z− z0)

(n−k)− j

−(z− z0)n−k

=

∑n=k+1

n(n−1) · · ·(n− k+1)an

(n−k

∑j=1

(n− k

j

)h j−1 (z− z0)

(n−k)− j

)

=∞

∑n=k+1

n(n−1) · · ·(n− k+1)(n− k)an (z− z0)(n−k)−1

+h∞

∑n=k+1

n(n−1) · · ·(n− k+1)an

(n−k

∑j=2

(n− k

j

)h j−2 (z− z0)

(n−k)− j

)

By what was shown earlier, limsupn→∞ ∥an∥1/n |z− z0|< 1. Consider the norm of the partin the above which multiplies h, |h|< 1.∥∥∥∥∥n(n−1) · · ·(n− k+1)an

(n−k

∑j=2

(n− k

j

)h j−2 (z− z0)

(n−k)− j

)∥∥∥∥∥≤ n(n−1) · · ·(n− k+1)∥an∥|z− z0|(n−k)−2

n−k

∑j=2

(n− k

j

)(|h||z− z0|

) j−2

(mj

)=

m(m−1) · · ·(m− j+1)j!

=m(m−1) · · ·(m− j+3)(m− j+2)(m− j+1)

j ( j−1)( j−2)!

=

(m

j−2

)(m− j+2)(m− j+1)

j ( j−1)≤(

mj−2

)(m)(m−1)

2

Thus the above is no more than

≤ n(n−1) · · ·(n− k+1)∥an∥|z− z0|(n−k)−2 ·(n− k)((n− k)−1)

2

n−k

∑j=2

(n− kj−2

)(h

|z− z0|

) j−2

≤ n(n−1) · · ·(n− k+1)(n− k)((n− k)−1)∥an∥(

1+|h||z− z0|

)n−k

14.8. THE CAUCHY FORMULA 359Consider 14.21 which involves identifying the a, in terms of the derivatives of f. This isobvious if k = 0. Suppose it is true for k. Then for small h € C,7 (0 (+A) F())ian (n—1)---(n—k+1)ay ((c-+h—z0)" *—(2-z9)"*)co n— n—k _a=; y n(n—1)---(n—k+1)ay rh j ) Wi ean) k)-jn=k+1 —(z— zg)"= y n(n—1)---(n—k+l)a (ECS ©) a lez ay)n=k+1 =|Yo n(n 1) (n= K+ 1) (n= bay (220)n=k+1n— (n— (nok j—2, _ (nk) —jon Ye al 1) k+1)an (= j ei (2-20)By what was shown earlier, limsup,,_... ||@n||'/" |z— zo] < 1. Consider the norm of the partin the above which multiplies h, |h| < 1.n(n—1)---(n—k+ 1) ay (E( me )wa(e-airer) |j=2<n(n—1)---(n—k+1) lly] z—20 “FG ‘)( i y"j= J lz —Zo|(") _ m(m=1)---(m—j-+1)j!_ m(m—1)-+-(m=j+3)(m—j+2)(m—j+))i(i-1) (7-2)!_( m_\ (m—j+2)(m—j+) m \ (m)(m—1)=(j")) iG-) <( "2 ) 2Thus the above is no more than< n(n—1)+-(n—k+1)|lanll [z— zo|"?oes ( nk ) (tyn—kn(n—1)++-(n=k+1)(n—k) (nk) = 1) lan] (1+ eal)IA