5.3. EXERCISES 105

Now give the solution in terms of a,b, and c to 1 0 32 3 41 0 2

 x

yz

=

 abc

 .

41. Using the inverse of the matrix, find the solution to the systems 1 0 32 3 41 0 2

 x

yz

 =

 123

 ,

 1 0 32 3 41 0 2

 x

yz

=

 210

 1 0 3

2 3 41 0 2

 x

yz

 =

 101

 ,

 1 0 32 3 41 0 2

 x

yz

=

 3−1−2

 .

Now give the solution in terms of a,b, and c to 1 0 32 3 41 0 2

 x

yz

=

 abc

 .

42. Using the inverse of the matrix, find the solution to the system−1 1

212

12

3 12 − 1

2 − 52

−1 0 0 1−2 − 3

414

94



xyzw

=

abcd

 .

43. Show that if A is an n×n invertible matrix and x is a n×1 matrix such that Ax = bfor b an n×1 matrix, then x = A−1b.

44. Prove that if A−1 exists and Ax = 0 then x = 0.

45. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I andAB = I, then B = A−1.

46. Show that if A is an invertible n×n matrix, then so is AT and(AT)−1

=(A−1

)T.

47. Show (AB)−1 = B−1A−1 by verifying that AB(B−1A−1

)= I and

B−1A−1 (AB) = I.

Hint: Use Problem 45.

48. Show that (ABC)−1 =C−1B−1A−1 by verifying that

(ABC)(C−1B−1A−1)= I

and(C−1B−1A−1

)(ABC) = I. Hint: Use Problem 45.