172 CHAPTER 8. RANK OF A MATRIX

We write this in the form

s1

− 3

5− 1

5100

+ s2



−6535010

+ s3



15− 2

5001

 : s1,s2,s3 ∈ R.

In other words, the null space of this matrix equals the span of the three vectors above.Thus

ker(A) = span



− 3

5− 1

5100

 ,



−6535010

 ,



15− 2

5001



 .

This is the same as

ker(A) = span





3515−100

 ,



65−350−10

 ,



−152500−1



 .

Notice also that the three vectors above are linearly independent and so the dimension ofker(A) is 3. This is generally the way it works. The number of free variables equals thedimension of the null space while the number of basic variables equals the number of pivotcolumns which equals the rank. We state this in the following theorem.

Definition 8.5.26 The dimension of the null space of a matrix is called the nullity3 andwritten as null(A) .

Theorem 8.5.27 Let A be an m×n matrix. Then rank(A)+null(A) = n.

8.5.6 Rank And Existence Of Solutions To Linear SystemsConsider the linear system of equations,

Ax = b (8.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.Suppose

A =(

a1 · · · an

)where the ak denote the columns of A. Then x = (x1, · · · ,xn)

T is a solution of the system8.4, if and only if

x1a1 + · · ·+ xnan = b3Isn’t it amazing how many different words are available for use in linear algebra?