18.4. BLOCK DIAGONAL MATRICES 435
More can be said. Recall Theorem 13.2.11 on Page 306. From this theorem, there existunitary matrices, Uk such that U∗k PkUk = Tk where Tk is an upper triangular matrix of theform
λ k · · · ∗...
. . ....
0 · · · λ k
≡ Tk
Now let U be the block diagonal matrix defined by
U ≡
U1 · · · 0...
. . ....
0 · · · Ur
.
By Theorem 18.4.2 there exists S such that
S−1AS =
P1 · · · 0...
. . ....
0 · · · Pr
.
Therefore,
U∗SASU =
U∗1 · · · 0
.... . .
...0 · · · U∗r
P1 · · · 0...
. . ....
0 · · · Pr
U1 · · · 0...
. . ....
0 · · · Ur
=
U∗1 P1U1 · · · 0
.... . .
...0 · · · U∗r PrUr
=
T1 · · · 0...
. . ....
0 · · · Tr
.
This proves most of the following corollary of Theorem 18.4.2.
Corollary 18.4.4 Let A be an n×n matrix. Then A is similar to an upper triangular, blockdiagonal matrix of the form
T ≡
T1 · · · 0...
. . ....
0 · · · Tr
where Tk is an upper triangular matrix having only λ k on the main diagonal. The diagonalblocks can be arranged in any order desired. If Tk is an mk×mk matrix, then
mk = dim(ker(A−λ kI)rk)
where the minimal polynomial of A is
p
∏k=1
(λ −λ k)rk
Furthermore, mk is the multiplicity of λ k as a zero of the characteristic polynomial of A.