470 APPENDIX A. THE JORDAN CANONICAL FORM*

Then noting that Bk is n× rk and Ck is rk×n,

CkNBk =

uT

1...

uTrk

( Nvk1 · · · Nvk

rk

)=

uT

1...

uTrk

( 0 vk1 · · · vk

rk−1

)

which equals an rk× rk matrix of the form

Jrk (0) =

0 1 · · · 0...

. . . . . ....

.... . . 1

0 · · · · · · 0

That is, it has ones down the super diagonal and zeros everywhere else. It follows

S−1NS =

C1...

Cs

N(

B1 · · · Bs

)=

Jr1 (0) 0

Jr2 (0). . .

0 Jrs (0)

as claimed. ■

Now let the upper triangular matrices, Tk be given in the conclusion of Corollary 18.4.4.Thus, as noted earlier,

Tk = λ kIrk×rk +Nk

where Nk is a strictly upper triangular matrix of the sort just discussed in Lemma A.0.3.Therefore, there exists Sk such that S−1

k NkSk is of the form given in Lemma A.0.3. NowS−1

k λ kIrk×rk Sk = λ kIrk×rk and so S−1k TkSk is of the form

Ji1 (λ k) 0Ji2 (λ k)

. . .

0 Jis (λ k)

where i1 ≥ i2 ≥ ·· · ≥ is and ∑

sj=1 i j = rk. This proves the following corollary.

Corollary A.0.4 Suppose A is an upper triangular n×n matrix having α in every positionon the main diagonal. Then there exists an invertible matrix S such that

S−1AS =

Jk1 (α) 0

Jk2 (α). . .

0 Jkr (α)

where k1 ≥ k2 ≥ ·· · ≥ kr ≥ 1 and ∑

ri=1 ki = n.