8.5. SOME EXAMPLES OF LINEAR FUNCTIONS ON Rn 143

− b√

a2+b2− c√

(a2+b2)a a

a√a2+b2

− c√(a2+b2)

b b

0 a2+b2√a2+b2

c

 .

Its inverse is − 1√

(a2+b2)b 1√

(a2+b2)a 0

− c√(a2+b2)

a − c√(a2+b2)

b√

(a2 +b2)

a b c

Therefore, the matrix which does the rotating is

− b√a2+b2

− c√(a2+b2)

a a

a√a2+b2

− c√(a2+b2)

b b

0 a2+b2√a2+b2

c

 cosθ −sinθ 0

sinθ cosθ 00 0 1

 ·− 1√

(a2+b2)b 1√

(a2+b2)a 0

− c√(a2+b2)

a − c√(a2+b2)

b√

(a2 +b2)

a b c

This yields a matrix whose columns are

b2 cosθ+c2a2 cosθ+a4+a2b2

a2+b2

−bacosθ+cb2 sinθ+ca2 sinθ+c2abcosθ+ba3+b3aa2+b2

−(sinθ)b− (cosθ)ca+ ca

 ,

−bacosθ−ca2 sinθ−cb2 sinθ+c2abcosθ+ba3+b3a

a2+b2

a2 cosθ+c2b2 cosθ+a2b2+b4

a2+b2

(sinθ)a− (cosθ)cb+ cb

 ,

 (sinθ)b− (cosθ)ca+ ca−(sinθ)a− (cosθ)cb+ cb(

a2 +b2)

cosθ + c2

Using the assumption that u is a unit vector so that a2 + b2 + c2 = 1, it follows the

desired matrix has the following as columns. cosθ −a2 cosθ +a2

−bacosθ +ba+ csinθ

−(sinθ)b− (cosθ)ca+ ca

 ,

 −bacosθ +ba− csinθ

−b2 cosθ +b2 + cosθ

(sinθ)a− (cosθ)cb+ cb



8.5. SOME EXAMPLES OF LINEAR FUNCTIONS ON R” 143b ce+e V(@+0) “a _ CcVewe — \(a2+02)a+b? Cc0 V a+b?Its inverse is—_—_—L—p — 0(e+e) (e+e)_ c _ c b /( 2p?)Were)" v( a+b?) (a+a b cTherefore, the matrix which does the rotating is_ b _ c aaVar+p Vv (a+b?) cos@ —sin@ 0a c .Voir “Tey b sin@ cos@ 00 sh 0 oO 1Vatl a 0- v( =m)" (+02)___¢ =p 24 pev( zy V(@+0) (ar +b")b cThis yields a matrix whose columns are2 cos 0+c2a? cos 0--at+a2b?az 2+b[ ns —bacos 0+cb? sin O-tca? sin @+c2abcos 0+ba>+b>aa*+b(sin @)b— (cos @)ca+ca—bacos @—ca? sin @—cb* sin @+c2abcos 0+ba? +b.aao +b?a eos b.e*b?c0s :0-+a°b?+b*a2+b2 ?(sin @)a—(cos@)cb+cb(sin 0) b—(cos@)ca+ca—(sin@)a—(cos 6) cb+cb(a +b’) cos 0 +c?Using the assumption that u is a unit vector so that a? +b* +c? = 1, it follows thedesired matrix has the following as columns.—bacos 0+ ba—csin@—b’ cos 6 + b* + cos@(sin @)a—(cos0@)cb+cbcos @ —a*cos 0 +a?—bacos@+ba+csin@ ;— (sin 0) b—(cos@)ca+ca