9.2. EXERCISES 167

(b)

1 0 04 1 12 1 00 2 0



(c)

0 1 0 2 1 2 20 3 2 12 1 6 80 1 1 5 0 2 30 2 1 7 0 3 4



(d)

0 1 0 2 0 1 00 3 2 6 0 5 40 1 1 2 0 2 20 2 1 4 0 3 2



(e)

0 1 0 2 1 1 20 3 2 6 1 5 10 1 1 2 0 2 10 2 1 4 0 3 1

6. Suppose A is an m× n matrix. Explain why the rank of A is always no larger than

min(m,n) .

7. A matrix A is called a projection if A2 = A. Here is a matrix. 2 0 21 1 2−1 0 −1

Show that this is a projection. Show that a vector in the column space of a projectionmatrix is left unchanged by multiplication by A.

8. Let H denote span

((12

),

(24

),

(13

)). Find the dimension of H and de-

termine a basis.

9. Let H denote span

 1

20

 ,

 240

 ,

 131

 ,

 011

 . Find the dimension of

H and determine a basis.

10. Let H denote span

 1

20

 ,

 140

 ,

 131

 ,

 011

 . Find the dimension of

H and determine a basis.

11. Let M ={u= (u1,u2,u3,u4) ∈ R4 : u3 = u1 = 0

}. Is M a subspace? Explain.

12. Let M ={u= (u1,u2,u3,u4) ∈ R4 : u3 ≥ u1

}. Is M a subspace? Explain.

13. Let w ∈ R4 and let M ={u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0

}. Is M a subspace?

Explain.

14. Let M ={u= (u1,u2,u3,u4) ∈ R4 : ui ≥ 0 for each i = 1,2,3,4

}. Is M a subspace?

Explain.

15. Let w,w1 be given vectors in R4 and define

M ={u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0 and w1 ·u= 0

}.

Is M a subspace? Explain.

9.2. EXERCISES 16710.11.12.13.14.15.1 0 0 0 102 0 1 =04 1 1 032605 4(b) (d)2 1 0 011202 20 2 0 02140 3 20 10 2 12 2 0 102 1 1 20 3 2 12 1 6 8 03 2615 1(c) (e)011 5 0 2 3 011202 10 2 1 0 3 4 021403 1Suppose A is an m Xn matrix. Explain why the rank of A is always no larger thanmin (m,n).. A matrix A is called a projection if A? = A. Here is a matrix.2 0 21 1 2-1 0 -1lShow that this is a projection. Show that a vector in the column space of a projectionmatrix is left unchanged by multiplication by A.1 2 1. Let H denote span (( 5 ) ; ( 4 ) , ( 3 )) . Find the dimension of H and de-termine a basis.1 2 0Let H denote span 21,) 4 1,/ 3 J[,] 1 . Find the dimension of0 0 1H and determine a basis.1 1 0Let H denote span 21,) 4 7,] 3 J[,] 1 . Find the dimension of0 0 1 1H and determine a basis.Let M = {u = (uy,U2,U3,U4) € Rt: ug =u, = Oo} . Is M a subspace? Explain.Let M = {u = (U1 ,U2,U3,U4) € Rt :u3 > m4 } . Is M a subspace? Explain.Let w € R* and let M = fu = (uy, U2,U3, U4) € R*:w-u= O}. Is M a subspace?Explain.Let M = {u = (uj, u2,u3,u4) € R* : uj > 0 for each i = 1,2,3,4}. Is M a subspace?Explain.Let w, wy be given vectors in R* and defineM= {u= (uj, U2, U3, U4) ER*:w-w=O0and w -u=0}.Is M a subspace? Explain.