214 CHAPTER 11. MATRICES AND THE INNER PRODUCT

Hint: Two eigenvalues are 18 and 24.

33. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 13 1 41 13 44 4 10

 .

Hint: Two eigenvalues are 12 and 18.

34. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

− 5

31

15

√6√

5 815

√5

115

√6√

5 − 145 − 1

15

√6

815

√5 − 1

15

√6 7

15

Hint: The eigenvalues are −3,−2,1.

35. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

3 0 00 3

212

0 12

32

 .

36. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 2 0 00 5 10 1 5

 .

37. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize Aby finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =



43

13

√3√

2 13

√2

13

√3√

2 1 − 13

√3

13

√2 − 1

3

√3 5

3

Hint: The eigenvalues are 0,2,2 where 2 is listed twice because it is a root of multi-plicity 2.