15.1. SPACE CURVES 277

Thus using 15.2 and this parametrization,

v×a=

∣∣∣∣∣∣∣i j k

−r sin t r cos t 0−r cos t −r sin t 0

∣∣∣∣∣∣∣= kr2

Thus

κ =r2

r3 =1r

Since v is constant, it follows from 15.1 that

a=1r|v|2 N =

1r

v2N

Example 15.1.4 Let R(t) =(cos(t) , t, t2

)for t ∈ [0,3]. Find the speed, velocity, curva-

ture, and write the acceleration in terms of normal and tangential components.

First of all, v (t) = (−sin t,1,2t) and so the speed is given by

|v|=√

sin2 (t)+1+4t2.

Therefore,

aT =ddt

(√sin2 (t)+1+4t2

)=

sin(t)cos(t)+4t√(2+4t2− cos2 t)

.

It remains to find aN . To do this, you can find the curvature first if you like.

a(t) =R′′ (t) = (−cos t,0,2) .

Then

κ =|(−cos t,0,2)× (−sin t,1,2t)|(√

sin2 (t)+1+4t2

)3 =

√4+(−2sin(t)+2(cos(t)) t)2 + cos2 (t)(√

sin2 (t)+1+4t2

)3

Then aN = κ |v|2

=

√4+(−2sin(t)+2(cos(t)) t)2 + cos2 (t)(√

sin2 (t)+1+4t2

)3

(sin2 (t)+1+4t2)

=

√4+(−2sin(t)+2(cos(t)) t)2 + cos2 (t)√

sin2 (t)+1+4t2.

You can observe the formula a2N +a2

T = |a|2 holds. Indeed a2N +a2

T =

√

4+(−2sin(t)+2(cos(t)) t)2 + cos2 (t)√sin2 (t)+1+4t2

2

+

(sin(t)cos(t)+4t√(2+4t2− cos2 t)

)2

=4+(−2sin t +2(cos t) t)2 + cos2 t

sin2 t +1+4t2+

(sin t cos t +4t)2

2+4t2− cos2 t= cos2 t +4 = |a|2

15.1. SPACE CURVES 277Thus using 15.2 and this parametrization,a j kvxa=| —rsint rcost 0 |=kr—rcost —rsint 0ThusSince v is constant, it follows from 15.1 that1 1a=-—|v? N=-VvNr rExample 15.1.4 Let R(t) = (cos(t),t,17) for t € [0,3]. Find the speed, velocity, curva-ture, and write the acceleration in terms of normal and tangential components.First of all, v (t) = (—sint, 1,2r) and so the speed is given by|v| = 4/ sin? (t) +1 +482.4ar = 4, (ysin?( 41-442) = sin (1) cos (1) +44 .dt (2+ 412 —cos?r)It remains to find ay. To do this, you can find the curvature first if you like.a(t) = R" (t) = (—cost,0,2).Therefore,Then|(—cost,0,2) x (sine, 1,21)| _ 4+ (—2sin (r) +2 (cos (t)) t)* +cos? (t)3 3( sin? (t) +1 +4) ( sin? (t) +1 +41)Then ay = k|v|*— 4+ (=2sin (1) +2 (cos (1))1)? + cos? (1) (sin? (t) + 1 +417)3( sin? (t) +1 var)4 + (—2sin (t) +2 (cos (t))t)? + cos? (t)sin? (t) + 1 +472You can observe the formula a, + a?. = |a|* holds. Indeed a?, + a?. =24+ (-2sin(r) +2 (cos (¢)) 1)? + c0s? (r) __ ( Sinleos(-+4e)’(2 + 412 —cos?r)sin? (t) + 1 +412_ 4+ (<2sint +2(cost)t)" + eos" in (sinteost +41)” = cost $4 =|al?sin°t+1+ 49? 2+4t? —cos*t