20.4. EXERCISES 377
=1
2z0
(4ρ− 2ρ
z0
(ρ
2 + z20−2ρz0 cosφ
)1/2 |π0)
=1
2z0
(4ρ− 2ρ
z0[(ρ + z0)− (ρ− z0)]
)= 0.
Therefore, in this case the inner integral of 20.1 equals zero and so the original integral willalso be zero.
The other case is when z0 > b and so it is always the case that z0 > ρ. In this case thefirst two terms of 20.2 are
2ρ (ρ + z0)√(ρ + z0)
2+
2ρ (ρ− z0)√(ρ− z0)
2=
2ρ (ρ + z0)
(ρ + z0)+
2ρ (ρ− z0)
z0−ρ= 0.
Therefore in this case, 20.2 equals
12z0
−∫ π
02ρ
2 sinφ√(ρ2 + z2
0−2ρz0 cosφ) dφ
=−ρ
2z20
∫ π
0
2ρz0 sinφ√(ρ2 + z2
0−2ρz0 cosφ) dφ
which equals
−ρ
z20
((ρ
2 + z20−2ρz0 cosφ
)1/2 |π0)
=−ρ
z20[(ρ + z0)− (z0−ρ)] =−2ρ2
z20.
Thus the inner integral of 20.1 reduces to the above simple expression. Therefore, 20.1equals ∫ 2π
0
∫ b
a
(− 2
z20
ρ2)
dρ dθ =−43
πb3−a3
z20
and so
αGk∫
H
(z− z0)[x2 + y2 +(z− z0)
2]3/2 dV
= αGk
(−4
3π
b3−a3
z20
)=−kG
total massz2
0.
20.4 Exercises1. Find the volume of the region bounded by z = 0,x2+(y−2)2 = 4, and z =
√x2 + y2.