20.4. EXERCISES 377

=1

2z0

(4ρ− 2ρ

z0

2 + z20−2ρz0 cosφ

)1/2 |π0)

=1

2z0

(4ρ− 2ρ

z0[(ρ + z0)− (ρ− z0)]

)= 0.

Therefore, in this case the inner integral of 20.1 equals zero and so the original integral willalso be zero.

The other case is when z0 > b and so it is always the case that z0 > ρ. In this case thefirst two terms of 20.2 are

2ρ (ρ + z0)√(ρ + z0)

2+

2ρ (ρ− z0)√(ρ− z0)

2=

2ρ (ρ + z0)

(ρ + z0)+

2ρ (ρ− z0)

z0−ρ= 0.

Therefore in this case, 20.2 equals

12z0

−∫ π

02ρ

2 sinφ√(ρ2 + z2

0−2ρz0 cosφ) dφ

=−ρ

2z20

∫ π

0

2ρz0 sinφ√(ρ2 + z2

0−2ρz0 cosφ) dφ

which equals

−ρ

z20

((ρ

2 + z20−2ρz0 cosφ

)1/2 |π0)

=−ρ

z20[(ρ + z0)− (z0−ρ)] =−2ρ2

z20.

Thus the inner integral of 20.1 reduces to the above simple expression. Therefore, 20.1equals ∫ 2π

0

∫ b

a

(− 2

z20

ρ2)

dρ dθ =−43

πb3−a3

z20

and so

αGk∫

H

(z− z0)[x2 + y2 +(z− z0)

2]3/2 dV

= αGk

(−4

b3−a3

z20

)=−kG

total massz2

0.

20.4 Exercises1. Find the volume of the region bounded by z = 0,x2+(y−2)2 = 4, and z =

√x2 + y2.

20.4. EXERCISES 377Ls 2 1/2= 5 (40 — ~ (p? +25 —2pzocos@) 5)ae (40-2 (+a0)- (pa) =.~ 229Therefore, in this case the inner integral of 20.1 equals zero and so the original integral willalso be zero.The other case is when zo > b and so it is always the case that zp > p. In this case thefirst two terms of 20.2 are2p(p+20) , 2p(P—z0) _ 2p(p+<z0) , 2p (Pp 2)Veta? Yip-w)? (PF) weTherefore in this case, 20.2 equals1 ,a -| 292 sing do0 (p? +25 — 2pzocos@)=0.2pz0 sin®p? +23 —2pzocos @)do22 [ v(which equals= ((p? +3 —2pzocos¢)/ |)_ 2 2= Pi(p+2)-Go-pyl=-F.<0 20Thus the inner integral of 20.1 reduces to the above simple expression. Therefore, 20.1equals ; 3 3m 4 b-ad0 = —-1—.—[ [ (-2 p) ap 3° oband soaGk (z= <0) dVH 3713/2[22 +32 + (2-20)220.4 Exercises1. Find the volume of the region bounded by z = 0,x? + (y— 2)” =4, and z= Jey.