25.3. CURVILINEAR COORDINATES 471

Example 25.3.1 D≡ (0,∞)× (0,π)× (0,2π) and y1

y2

y3

=

 x1 sin(x2)

cos(x3)

x1 sin(x2)

sin(x3)

x1 cos(x2)

(We usually write this as  x

yz

=

 ρ sin(φ)cos(θ)ρ sin(φ)sin(θ)

ρ cos(φ)

where (ρ,φ ,θ) are the spherical coordinates. We are calling them x1,x2, and x3 to preservethe notation just discussed.) Thus

e1 (x) = sin(x2)cos

(x3)i1 + sin

(x2)sin

(x3)i2 + cos

(x2)i3,

e2 (x) = x1 cos(x2)cos

(x3)i1

+x1 cos(x2)sin

(x3)i2− x1 sin

(x2)i3,

e3 (x) =−x1 sin(x2)sin

(x3)i1 + x1 sin

(x2)cos

(x3)i2 +0i3.

It follows the metric tensor is

G =

 1 0 00(x1)2 0

0 0(x1)2 sin2 (x2

)= (gi j) = (ei ·e j) . (25.18)

Therefore, by Theorem 25.1.6G−1 =

(gi j)

=(ei,e j)=

 1 0 00(x1)−2 0

0 0(x1)−2 sin−2 (x2

) .

To obtain the dual basis, use Theorem 25.1.6 to write

e1 (x) = g1 je j (x) = e1 (x)

e2 (x) = g2 je j (x) =(x1)−2

e2 (x)

e3 (x) = g3 je j (x) =(x1)−2

sin−2 (x2)e3 (x) .

Note that ∂y

∂yk ≡ ek (y) = ik = ik where, as described,(

y1 · · · yn)

are the rectan-gular coordinates of the point in Rn.

25.3. CURVILINEAR COORDINATES 471Example 25.3.1 D = (0,00) x (0,7) x (0,27) andy! x! sin (x7) cos (x3)y = x! sin (x”) sin (x3)y x! cos (x”)(We usually write this asx psin(@) cos (0)y | =| psin(o) sin(6)z pcos (9)where (p,@,@) are the spherical coordinates. We are calling them x! ,x*, and x° to preservethe notation just discussed.) Thuse; (a) = sin (x?) cos (2°) 4, +sin (x?) sin (x°) 4. + cos (x?) 43,e9 (x) =x! cos (x?) cos (2°) 41+x! cos (x?) sin (x°) rm) —x! sin (x?) 13,e3 (a) = —x' sin (x?) sin (x3) i, +x! sin (x?) cos (2°) do + 083.It follows the metric tensor is1 0 0G=] 0 (')* 0 = (gi) = (e;-e;). (25.18)0 0 (x!)*sin? (x?)=(ce)=[0 @)? 00 0 (x!) *sin-? (x)To obtain the dual basis, use Theorem 25.1.6 to writee' (x) = g'/e; (a) =e; (a)e* (a) =g%e;(x) = (x!) “er (a)e* (x) = g%ej(#) = (x!) |Note that sy = ex (y) =i‘ = i; where, as described, ( a ) are the rectan-gular coordinates of the point in R”.