30.1. LINEAR O.D.E. WITH CONSTANT COEFFICIENTS 583
Table of Laplace Transforms
f (t) F (s)
1.) 1 1/s
2.) eat 1/(s−a)
3.) tn n!sn+1
4.) t p, p >−1 Γ(p+1)sp+1
5.) sinat as2+a2
6.) cosat ss2+a2
7.) eibt s+ibs2+b2
8.) sinhat as2−a2
9.) coshat ss2−a2
10.) eat sinbt b(s−a)2+b2
11.) eat cosbt s−a(s−a)2+b2
f (t) F (s)
12.) eat sinhbt b(s−a)2−b2
13.) eat coshbt s−a(s−a)2−b2
14) tneat n!(s−a)n+1
15.) uc (t) e−cs
s
16.) uc (t) f (t− c) e−csF (s)
17.) ect f (t) F (s− c)
18.) f (ct) 1c F( s
c
)19.) f ∗g(t) F (s)G(s)
20.) δ (t− c) e−cs
21.) f′(t) sF (s)− f (0)
22.) (−t)n f (t) dnFdsn (s)
You should verify the claims in this table. It is best if you do it yourself. The fun-damental result in using Laplace transforms is this. If you have F (s) = G(s) then asidefrom finitely many jumps on each bounded interval, it follows that f (t) = g(t) . Thus youjust go backwards in the table to find the desired functions. To see this shown, see Section4.2 on Page 47. I will illustrate with a second order differential equation having constantcoefficients. Of course you can change to a first order system and this will be the emphasisnext, but you can also use the method directly. Note∫
∞
0y′′ (t)e−stdt = y′ (t)e−st |∞0 + s
∫∞
0y′ (t)e−stdt
= −y′ (0)+ s∫
∞
0y′ (t)e−stdt
= −y′ (0)+ s[
y(t)e−st |∞0 + s∫
∞
0y(t)e−stdt
]= −y′ (0)− sy(0)+ s2Y (s) (30.1)
A similar formula holds for higher derivatives. You can also get this by iterating 21.
Example 30.1.3 Find all solutions to the equation y′′−2y′+ y = e−t .
From the table, first go to y′′. This gives −y′ (0)− sy(0)+ s2Y (s) then you go to thenext term which gives −2sY (s)+2y(0) and finally, you get Y (s) from the y. On the rightyou get from formula 2. 1/(s+1) . Therefore, you have
s2Y (s)−2sY (s)+Y (s)− y′ (0)− sy(0)+2y(0) =1
s+1(s2−2s+1
)Y (s) = y′ (0)+(s−2)y(0)+
1s+1