590 CHAPTER 30. LAPLACE TRANSFORM METHODS

Example 30.2.7 Find the solution to

x′ =

(−4 −36 5

)x+

(cos t

et

),x(0) =

(11

)

First find the fundamental matrix. One goes backwards in the table to find the following.

(sI−A)−1 =

(s

(1 00 1

)−

(−4 −36 5

))−1

=

 − s−5−s2+s+2

3−s2+s+2

− 1− 1

6 s2+ 16 s+ 1

3−

16 s+ 2

3− 1

6 s2+ 16 s+ 1

3

Then using going backwards in the table and writing in terms of cosh and sinh,

Φ(t) =

(e

12 t(cosh 3

2 t−3sinh 32 t)

−2(sinh 3

2 t)

e12 t

4(sinh 3

2 t)

e12 t e

12 t(cosh 3

2 t +3sinh 32 t) )

Then the solution is

x(t) =

(e

12 t(cosh 3

2 t−3sinh 32 t)

−2(sinh 3

2 t)

e12 t

4(sinh 3

2 t)

e12 t e

12 t(cosh 3

2 t +3sinh 32 t) )( 1

1

)

+∫ t

0Φ(t−u)f (u)du

x(t) =

(e

12 t(cosh 3

2 t−5sinh 32 t)

e12 t(cosh 3

2 t +7sinh 32 t) )+

∫ t

0Φ(t− s)

(coss

es

)ds

Doing the integrations, one obtains

∫ t

0Φ(t− s)

(coss

es

)ds

=

(110 e−t

(15e2t −14e3t +14(cos t)et +8et sin t−15

)− 1

10 e−t(25e2t −28e3t +18(cos t)et +6et sin t−15

) )

It follows that x(t) =32 et + 4

5 sin t− 32 e−t − 7

5 e2t +(cosh 3

2 t)

e12 t

−5(sinh 3

2 t)

e12 t + 7

5 (cos t)ete−t

32 e−t − 3

5 sin t− 52 et + 14

5 e2t +(cosh 3

2 t)

e12 t

+7(sinh 3

2 t)

e12 t − 9

5 (cos t)ete−t

Using the table as just described really is a pretty good way to solve these kinds of

equations, but there is a much easier way to do it. You let the computer algebra system dothe tedious work for you. Here is the general idea for a first order system. Be patient. I will

590 CHAPTER 30. LAPLACE TRANSFORM METHODSExample 30.2.7 Find the solution to,_{ —4 -3 cost {1(8 Ss )e()20-(4)First find the fundamental matrix. One goes backwards in the table to find the following.mn = OS)___s-5 3_ —s2-+s+2 —stts+2—_ _ 1 _ 6st3—Ase4hstht —Ase+hsthThen using going backwards in the table and writing in terms of cosh and sinh,ent (cosh 3¢—3sinh 31) —2 (sinh 31) ert® (tr) = . 13 1, 1, 3 . 434 (sinh 51) e? e2' (cosh 3t + 3 sinh $1)Then the solution isx(t) = ( e2' (cosh 3¢ —3sinh 31) —2 (sinh 31) e2! ) ( \ )4 (sinh 37) ex! er! (cosh 3¢ +3 sinh 37) 1+| ® (t —u) f (u)du12! (cosh 3t —5 sinh 3¢ ta(t)= e (cos sin ) +/ (1—s) coss \e2' (cosh $t +7 sinh 31) 0 éeDoing the integrations, one obtains[ees ( i Jas( dhe (15e”' — 14e* + 14 (cost) ef + 8e! sint — 15) )— pe! (25e7 — 28e* + 18 (cost) e + 6e" sint — 15)It follows that a (+) =3e! + 3 sint — 3e7 — ze + (cosh 31) er!—5 (sinh 37) ext Z (cost) ee!Re = 3 sint = 36! + ioe + (cosh 31) er!+7 (sinh 37) ex! — 2 (cost) ee!Using the table as just described really is a pretty good way to solve these kinds ofequations, but there is a much easier way to do it. You let the computer algebra system dothe tedious work for you. Here is the general idea for a first order system. Be patient. I will