33.6. INTEGRATING AND DIFFERENTIATING FOURIER SERIES 655

Then plugging in π to the Fourier series for G we get

0 = A0 +∞

∑n=1

An (−1)n , A0 =−∞

∑n=1

An (−1)n (*)

Next consider An,n > 0.

LAn =∫ L

−L

∫ x

−L( f (t)−a0)dt cos

(nπxL

)dx

=n−1

∑k=0

∫ xk+1

xk

(∫ xk

−L( f (t)−a0)dt +

∫ x

xk

( f (t)−a0)dt)

cos(nπx

L

)dx

=n−1

∑k=0

∫ xk+1

xk

∫ xk

−L( f (t)−a0)dt cos

(nπxL

)dx

+n−1

∑k=0

(L

nπsin( nπx

L

)∫ xxk( f (t)−a0)dt|xk+1

xk

−∫ xk+1

xkL

nπsin( nπx

L

)( f (x)−a0)dx

)

=n−1

∑k=0

∫ xk+1

xk

G(xk)cos(nπx

L

)dx+

n−1

∑k=0

Lnπ

sin(nπxk+1

L

)(G(xk+1)−G(xk))

−n−1

∑k=0

∫ xk+1

xk

Lnπ

sin(nπx

L

)( f (x)−a0)dx

Now do an integration on the first sum. This yields

Lnπ

n−1

∑k=0

G(xk)(

sin(nπxk+1

L

)− sin

(nπxk

L

))+

Lnπ

n−1

∑k=0

sin(nπxk+1

L

)(G(xk+1)−G(xk))

−n−1

∑k=0

∫ xk+1

xk

Lnπ

sin(nπx

L

)( f (x)−a0)dx

The sums simplify and the result one obtains is

Lnπ

n−1

∑k=0

G(xk+1)sin(nπxk+1

L

)−G(xk)sin

(nπxk

L

)

−n−1

∑k=0

∫ xk+1

xk

Lnπ

sin(nπx

L

)( f (x)−a0)dx

The series telescopes and the result is 0 because G(L) = G(−L) = 0. Thus the result of itall is

LAn = −n−1

∑k=0

∫ xk+1

xk

Lnπ

sin(nπx

L

)( f (x)−a0)dx

=∫ L

−L− L

nπsin(nπx

L

)( f (x)−a0)dx

33.6. INTEGRATING AND DIFFERENTIATING FOURIER SERIES 655Then plugging in 7 to the Fourier series for G we get0=Ay+¥ An (—1)", Ao =— Yn (-1)" (*)n=1n=1Next consider A,,n > 0.nx1A, = [ [re )—ao )dtcos (“ Z )ax¥ | (five (F ( vars [re jar) ear= )-a )-a cos ( — ] dxk=0 7 Xk - ° 0) Lype (f (t ) — ap) dt eos ( me dxn—-| aa Sin ("7") * (f(t) —ao) dt!Ele Fe aaa Sin (22°) (f (x) — a0) dx )IX nn ©L¥ [En (ro)n (2= rf G(x) cos (7 *) dx > si i n (“EEt) (G (xe+1) — G (xx)LNow do an integration on the first sum. This yieldsL’'o 1. 1.LF GX XK ) (sin (“*) — sin (4 =)AT (=H L Ln—1+= ¥ sin (EE) (G(xu41) Ga)k=0¥ [ ~ sin (“*) (F(x) ~ao)axThe sums simplify and the result one obtains isLL’ NUXK+| NIX,we ees) sin (=F ) — G(au)sin (*)oa py (xp41) sin L (x) sin LThe series telescopes and the result is 0 because G(L) = G(—L) = 0. Thus the result of itall isLA, = FE sin (™) (F() — anya= / —— sin (=) (f (x) — ao) dx