35.3. CONTOUR INTEGRALS 703

Lemma 35.3.6 Let f : [a,b]→ R be continuous. Then there exists c ∈ (a,b) such that

f (c)(b−a) =∫ b

af (x)dx

Proof: Let F (x)≡∫ x

a f (t)dt. Then by the mean value theorem,

F (b)−F (a) = F ′ (c)(b−a)

for some c ∈ (a,b). But F ′ (x) = f (x) and so this proves the lemma. ■

Lemma 35.3.7 Let γ,η be parametrizations for two smooth curves, γ ([a,b]) and η ([c,d])and let f : γ∗×η∗→ R be continuous. Then∫

η

∫γ

f (z,w)dzdw =∫

γ

∫η

f (z,w)dwdz

In other words, you can switch the contour integrals.

Proof: That on the left is by definition,∫η

∫γ

f (z,w)dzdw =∫ d

c

∫ b

af (γ (t) ,η (s))γ

′ (t)η′ (s)dtds

Let P be a partition for [a,b] and Q a partition for [c,d] . Then the above is

n

∑i=1

m

∑j=1

∫ si

si−1

∫ t j

t j−1

f (γ (t) ,η (s))γ′ (t)η

′ (s)dtds

=n

∑i=1

m

∑j=1

∫ si

si−1

f (γ (t̂ j) ,η (s))γ′ (t̂ j)

(t j− t j−1

)η′ (s)ds

=n

∑i=1

m

∑j=1

f (γ (t̂ j) ,η (ŝi))γ′ (t̂ j)η

′ (ŝi)(t j− t j−1

)(si− si−1)

by an application of the mean value theorem for integrals from calculus. Here (t̂ j, ŝi) ∈(t j−1, t j

)× (si−1,si). Similarly,∫

γ

∫η

f (z,w)dwdz =m

∑j=1

n

∑i=1

f (γ (t̃ j) ,η (s̃i))γ′ (t̃ j)η

′ (s̃i)(t j− t j−1

)(si− si−1)

=n

∑i=1

m

∑j=1

f (γ (t̃ j) ,η (s̃i))γ′ (t̃ j)η

′ (s̃i)(t j− t j−1

)(si− si−1)

where (t̃ j, s̃i) ∈(t j−1, t j

)× (si−1,si). By uniform continuity, if ∥P∥ ,∥Q∥ are small enough,

then ∣∣ f (γ (t̃ j) ,η (s̃i))γ′ (t̃ j)η

′ (s̃i)− f (γ (t̂ j) ,η (ŝi))γ′ (t̂ j)η

′ (ŝi)∣∣< ε

and so ∣∣∣∣∫η

∫γ

f (z,w)dzdw−∫

γ

∫η

f (z,w)dwdz∣∣∣∣< ε (b−a)(d− c) .

Since ε is arbitrary, the two contour integrals must be equal. ■

35.3. CONTOUR INTEGRALS 703Lemma 35.3.6 Let f : [a,b] > R be continuous. Then there exists c € (a,b) such thatFo(o—a)= [FaxProof: Let F (x) = f° f (t)dt. Then by the mean value theorem,F (b) —F (a) = F' (c) (b—a)for some c € (a,b). But F’ (x) = f (x) and so this proves the lemma. llLemma 35.3.7 Let y,1 be parametrizations for two smooth curves, y([a,b]) and ([c,d])and let f : y° x n* > R be continuous. Theni [semacaw= |] F(w)anaeIn other words, you can switch the contour integrals.Proof: That on the left is by definition,[ [remaaw=[° [rooney on ausLet P be a partition for [a,b] and Q a partition for [c,d]. Then the above isESL [! er@.nyr On ads|M=SYa4Sn(s)) ¥ (é&) (tj —tj-1) n (s) ds=, f(y (7), (8) ¥ (&) n! (8) (t7 —t)-1) (si - 1-1)by an application of the mean value theorem for integrals from calculus. Here (fj, 5;) €(t;-1,t;) x (Sj-1,5i). Similarly,[ [fe dwdz3IM=oS—»—amWw3—ai)) ¥ (&) n! (8) (tj —tj-1) (Si — 8-1)7i3f(y). (5) 7 (&) n! (8) (t7 —t7-1) (8i — i-1)Ill=naIlwhere (7;,5;) € (tj-1,t;) x (si-1,8;). By uniform continuity, if ||P\l , |||] are small enough,thenIF (rv (é).m (5:)) 7 Ei) 0 (Si) — F (VE) 0 (8) ¥ Ei) (S| <€[ [femacaw— [| sew) awa:Since € is arbitrary, the two contour integrals must be equal.and so<e€(b—a)(d—c).