162 CHAPTER 6. SPECTRAL THEORY

where Pk is an mk ×mk matrix. Then

det (A) =∏k

det (Pk) .

Also, the eigenvalues of A consist of the union of the eigenvalues of the Pj.

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗kPkUk = Tk

where Tk is upper triangular. Then it follows that for

U ≡

U1 · · · 0...

. . ....

0 · · · Us

 , U∗ =

U∗1 · · · 0...

. . ....

0 · · · U∗s

and also

U∗1 · · · 0...

. . ....

0 · · · U∗s



P1 · · · ∗...

. . ....

0 · · · Ps



U1 · · · 0...

. . ....

0 · · · Us

 =

T1 · · · ∗...

. . ....

0 · · · Ts

 .

Therefore, since the determinant of an upper triangular matrix is the product of the diagonalentries,

det (A) =∏k

det (Tk) =∏k

det (Pk) .

From the above formula, the eigenvalues of A consist of the eigenvalues of the upper trian-gular matrices Tk, and each Tk has the same eigenvalues as Pk. ■

What if A is a real matrix and you only want to consider real unitary matrices?

Theorem 6.4.7 Let A be a real n×n matrix. Then there exists a real unitary (orthogonal)matrix Q and a matrix T of the form

T =

P1 · · · ∗

. . ....

0 Pr

 (6.12)

where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as itseigenvalues a conjugate pair of eigenvalues of A such that QTAQ = T. The matrix T iscalled the real Schur form of the matrix A. Recall that a real unitary matrix is also calledan orthogonal matrix.

Proof: SupposeAv1 = λ1v1, |v1| = 1

where λ1 is real. Then let {v1, · · · ,vn} be an orthonormal basis of vectors in Rn. Let Q0

be a matrix whose ith column is vi. Then Q∗0AQ0 is of the form

λ1 ∗ · · · ∗0... A1

0

