334 CHAPTER 13. NORMS
∥∥∥(A+B)−1∥∥∥ ≤
∥∥A−1∥∥ ∣∣∣∣ 1
1− ∥A−1B∥
∣∣∣∣ . (13.7)
The above formula makes sense because∣∣∣∣A−1B
∣∣∣∣ < 1.
Proof: By Lemma 13.0.10,∥∥A−1B∥∥ ≤
∥∥A−1∥∥ ∥B∥ <
∥∥A−1∥∥ 1
∥A−1∥= 1 (13.8)
Then from the triangle inequality,∥∥(I +A−1B)x∥∥ ≥ ∥x∥ −
∥∥A−1Bx∥∥
≥ ∥x∥ −∥∥A−1B
∥∥ ∥x∥ =(1−
∥∥A−1B∥∥) ∥x∥
It follows that I + A−1B is one to one because from 13.8, 1 −∣∣∣∣A−1B
∣∣∣∣ > 0. Thus if(I +A−1B
)x = 0, then x = 0. Thus I +A−1B is also onto, taking a basis to a basis. Then
a generic y ∈ X is of the form y =(I +A−1B
)x and the above shows that∥∥∥(I +A−1B
)−1y∥∥∥ ≤
(1−
∣∣∣∣A−1B∣∣∣∣)−1 ∥y∥
which verifies 13.6. Thus (A+B) = A(I +A−1B
)is one to one and this with Lemma
13.0.10 implies 13.7. ■
Proposition 13.2.3 Suppose A is invertible, b ̸= 0, Ax = b, and (A+B)x1 = b1 where||B|| < 1/
∣∣∣∣A−1∣∣∣∣. Then
∥x1 − x∥∥x∥
≤∥∥A−1
∥∥ ∥A∥1− ∥A−1B∥
(∥b1 − b∥
∥b∥+
∥B∥∥A∥
)Proof: This follows from the above lemma.
∥x1 − x∥∥x∥
=
∥∥∥(I +A−1B)−1
A−1b1 −A−1b∥∥∥
∥A−1b∥
≤ 1
1− ∥A−1B∥
∥∥A−1b1 −(I +A−1B
)A−1b
∥∥∥A−1b∥
≤ 1
1− ∥A−1B∥
∥∥A−1 (b1 − b)∥∥+ ∥∥A−1BA−1b
∥∥∥A−1b∥
≤∥∥A−1
∥∥1− ∥A−1B∥
(∥b1 − b∥∥A−1b∥
+ ∥B∥)
because A−1b/∥∥A−1b
∥∥ is a unit vector. Now multiply and divide by ∥A∥ . Then
≤∥∥A−1
∥∥ ∥A∥1− ∥A−1B∥
(∥b1 − b∥
∥A∥ ∥A−1b∥+
∥B∥∥A∥
)≤
∥∥A−1∥∥ ∥A∥
1− ∥A−1B∥
(∥b1 − b∥
∥b∥+
∥B∥∥A∥
). ■
This shows that the number,∥∥A−1
∥∥ ∥A∥ , controls how sensitive the relative change inthe solution of Ax = b is to small changes in A and b. This number is called the condition