2.9. EXERCISES 79
35. You have a linear transformation T and
T
1
2
−18
=
5
2
5
, T
−1
−1
15
=
3
3
5
T
0
−1
4
=
2
5
−2
Find the matrix of T . That is find A such that Tx = Ax.
36. Suppose V is a subspace of Fn and T : V → Fp is a nonzero linear transformation.Show that there exists a basis for Im (T ) ≡ T (V )
{Tv1, · · · , Tvm}
and that in this situation,{v1, · · · ,vm}
is linearly independent.
37. ↑In the situation of Problem 36 where V is a subspace of Fn, show that there exists{z1, · · · , zr} a basis for ker (T ) . (Recall Theorem 2.6.12. Since ker (T ) is a subspace,it has a basis.) Now for an arbitrary Tv ∈ T (V ) , explain why
Tv = a1Tv1 + · · ·+ amTvm
and why this implies
v − (a1v1 + · · ·+ amvm) ∈ ker (T ) .
Then explain why V = span (v1, · · · ,vm, z1, · · · , zr) .
38. ↑In the situation of the above problem, show {v1, · · · ,vm, z1, · · · , zr} is a basis for Vand therefore, dim (V ) = dim (ker (T )) + dim (T (V )) .
39. ↑Let A be a linear transformation from V to W and let B be a linear transformationfrom W to U where V,W,U are all subspaces of some Fp. Explain why
A (ker (BA)) ⊆ ker (B) , ker (A) ⊆ ker (BA) .
ker(B)
A(ker(BA))
ker(BA)
ker(A)A
40. ↑Let {x1, · · · ,xn} be a basis of ker (A) and let
{Ay1, · · · , Aym}
be a basis of A (ker (BA)). Let z ∈ ker (BA) . Explain why
Az ∈ span {Ay1, · · · , Aym}