34.4. THE IMPLICIT CASE 1195

where X was defined in 34.4.27, then

supt∈[0,T ]

⟨B

u∥u∥X

,u∥u∥X

⟩(t)≤C (1) =C

and sosup

t∈[0,T ]⟨Bu,u⟩(t)≤C∥u∥2

X

Now define for u,v ∈ X

⟨Bu,v⟩(t)≡ 12[⟨B(u+ v) ,u+ v⟩(t)− (⟨Bu,u⟩(t)+ ⟨Bv,v⟩(t))]

and so for a.e. t,⟨Bu,v⟩(t) = ⟨B(u(t)) ,v(t)⟩ and t → ⟨Bu,v⟩(t) is continous. Also, theremust exist C such that for all u,v and t ∈ [0,T ] ,

|⟨Bu,v⟩(t)| ≤C∥u∥X ∥v∥X

If this is not so, then you could get un,vn having norm equal to 1 in X such that

supt∈[0,T ]

|⟨Bun,vn⟩(t)|> n

But then, letting tn be a point where |⟨Bun,vn⟩(tn)|> n,

n < |⟨Bun,vn⟩(tn)| ≤12

[C(∥un + vn∥2

X +∥u∥2X +∥v∥2

X

)]=

C2(4+1+1) = 3C

which is clearly a contradiction. It follows that one can define K : X → X ′ as follows.

⟨Ku,v⟩ ≡∫ T

0⟨Lu,v⟩ds+ ⟨Bu,v⟩(0)

Thus K is linear and continuous. In addition,

⟨Ku,u⟩= 12[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

To see this, Corollary 34.4.6 implies

12⟨Bu,u⟩(T ) = 1

2⟨Bu,u⟩(0)+

∫ T

0

⟨(Bu)′ (s) ,u(s)

⟩ds

and so12⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)

=12⟨Bu,u⟩(0)+

∫ T

0

⟨(Bu)′ (s) ,u(s)

⟩ds+ ⟨Bu,u⟩(0)

and so, this yields∫ T

0

⟨(Bu)′ (s) ,u(s)

⟩ds+ ⟨Bu,u⟩(0) = ⟨Ku,u⟩= 1

2[⟨Bu,u⟩(T )+ ⟨Bu,u⟩(0)]

as claimed. This proves most of the following.

34.4. THE IMPLICIT CASE 1195where X was defined in 34.4.27, thensup (a, =) (1) <C(I)=Crelo.r] \ {l#lly [lellxsup (Bu,u) (t) <C|lullxte [0,7]and soNow define for u,v € X(Bu, v) (t) = 5 [(B(u+v) ,w+v) (t) — ((Bu,u) (t) + (By,v) (¢))|and so for a.e. t, (Bu,v) (t) = (B(u(t)),v(t)) and t > (Bu,v) (t) is continous. Also, theremust exist C such that for all u,v andt € [0,7],| (Bu, v) (t)| < Cully IlvllxIf this is not so, then you could get uy,v, having norm equal to | in X such thatsup |(Bun, Vn) (t)| >nte{0,T]But then, letting f, be a point where |(Bun, vn) (tr) | > 1,1 2 2 2\] _C€ _n<|(Bun Vn) (tu)| S 5 [C (lun + valle + llellx + IWvllx) | = 5 (441+ 1) = 3Cwhich is clearly a contradiction. It follows that one can define K : X — X’ as follows.(Ku,v) = [ (Lu, v) ds + (Bu,v) (0)Thus K is linear and continuous. In addition,(Kusu) = 5{(Busu) (7) + (Bu,u) (0)To see this, Corollary 34.4.6 implies5 (Buu) (7) = 5(Bu,u) (0) + f° ((Bu)(s),u(s)) dsand so(Bu,u) (T) + (Bu,u) (0)NIB NIr /(Bu, u) (0)+ | ((Bu)' (s),u(s))ds + (Bu,u) (0)and so, this yields[ ((Bu)' (s) ,u(s)) ds + (Bu, u) (0) = (Ku,u) = 5 [(Bu, u) (T) + (Bu, u) (0)|as claimed. This proves most of the following.