1220 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
un (t)dsX[ti−1,ti) (t)−k
∑i=1
1ti− ti−1
∫ ti
ti−1
un (s)dsX[ti−1,ti) (t)
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
(un (t)−un (s))dsX[ti−1,ti) (t) .
It follows from Jensen’s inequality that
||un (t)−un (t)||pW
=k
∑i=1
∣∣∣∣∣∣∣∣ 1ti− ti−1
∫ ti
ti−1
(un (t)−un (s))ds∣∣∣∣∣∣∣∣p
WX[ti−1,ti) (t)
≤k
∑i=1
1ti− ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsX[ti−1,ti) (t)
and so ∫ b
a||(un (t)−un (s))||pW ds
≤∫ b
a
k
∑i=1
1ti− ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsdt. (34.7.59)
From Theorem 34.7.2 if ε > 0, there exists Cε such that
||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX
≤ 2p−1ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q
This is substituted in to 34.7.59 to obtain∫ b
a||(un (t)−un (s))||pW ds≤
k
∑i=1
1ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
(2p−1
ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q)
dsdt
=k
∑i=1
2pε
∫ ti
ti−1
||un (t)||pW +Cε
ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
|t− s|p/q dsdt
≤ 2pε
∫ b
a||un (t)||p dt +Cε
k
∑i=1
1(ti− ti−1)
(ti− ti−1)p/q∫ ti
ti−1
∫ ti
ti−1
dsdt
= 2pε
∫ b
a||un (t)||p dt +Cε
k
∑i=1
1(ti− ti−1)
(ti− ti−1)p/q (ti− ti−1)
2
≤ 2pεRp +Cε
k
∑i=1
(ti− ti−1)1+p/q = 2p
εRp +Cε k(
b−ak
)1+p/q
.