43.5. SOME IMBEDDING THEOREMS 1447
≤ 2p−1ε (||un (t)||p + ||un (s)||p)+Cε
∣∣∣∣∣∣∣∣∫ t
su′n (r)dr
∣∣∣∣∣∣∣∣pX
≤ 2p−1ε (||un (t)||p + ||un (s)||p)+Cε
(∫ t
s
∣∣∣∣u′n (r)∣∣∣∣X dr)p
≤ 2p−1ε (||un (t)||p + ||un (s)||p)
+Cε
((∫ t
s
∣∣∣∣u′n (r)∣∣∣∣qX dr)1/q
|t− s|1/q′)p
= 2p−1ε (||un (t)||p + ||un (s)||p)+Cε Rp/q |t− s|p/q′ .
This is substituted in to 43.5.25 to obtain∫ b
a||(un (t)−un (s))||pW ds≤
k
∑i=1
1ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
(2p−1
ε (||un (t)||p + ||un (s)||p)
+Cε Rp/q |t− s|p/q′)
dsdt
=k
∑i=1
2pε
∫ ti
ti−1
||un (t)||pW +Cε Rp/q 1ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
|t− s|p/q′ dsdt
= 2pε
∫ b
a||un (t)||p dt +Cε Rp/q
k
∑i=1
1(ti− ti−1)
(ti− ti−1)p/q′
∫ ti
ti−1
∫ ti
ti−1
dsdt
= 2pε
∫ b
a||un (t)||p dt +Cε Rp/q
k
∑i=1
1(ti− ti−1)
(ti− ti−1)p/q′ (ti− ti−1)
2
≤ 2pεRp +Cε Rp/q
k
∑i=1
(ti− ti−1)1+p/q′ = 2p
εRp +Cε Rp/qk(
b−ak
)1+p/q′
.
Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows
||un−un||Lp([a,b];W ) <η
4.
Now use compactness of the embedding of E into W to obtain a subsequence such that{un} is Cauchy in Lp (a,b;W ) and use this to contradict 43.5.24. The details follow.
Suppose un (t) = ∑ki=1 un
i X[ti−1,ti) (t) . Thus
||un (t)||E =k
∑i=1||un
i ||E X[ti−1,ti) (t)
and so
R≥∫ b
a||un (t)||pE dt =
Tk
k
∑i=1||un
i ||pE