Chapter 45
Traces Of Sobolev Spaces45.1 Traces Of Sobolev Spaces, Half Space
In this section consider the trace of W m,p(Rn+
)onto a Sobolev space of functions defined
on Rn−1. This latter Sobolev space will be defined in terms of the following theory insuch a way that the trace map is continuous. The trace map is continuous as a map fromW m,p
(Rn+
)to W m−1,p
(Rn−1
)but here I will give a better conclusion using the above the-
ory.
Definition 45.1.1 Let θ ∈ (0,1) and let Ω be an open subset of Rm. We define
W θ ,p (Ω)≡ T(W 1,p (Ω) ,Lp (Ω) , p,1−θ
).
Thus, from the above general theory, W 1,p (Ω) ↪→ W θ ,p (Ω) ↪→ Lp (Ω) = Lp (Ω) +W 1,p (Ω) . Now we consider the trace map for Sobolev space.
Lemma 45.1.2 Let φ ∈C∞(Rn+
). Then γφ (x′)≡ φ (x′,0) . Then γ : C∞
(Rn+
)→ Lp
(Rn−1
)is continuous as a map from W 1,p
(Rn+
)to Lp
(Rn−1
).
Proof: We know
φ(x′,xn
)= γφ
(x′)+∫ xn
0
∂φ (x′, t)∂ t
dt
Then by Jensen’s inequality,∫Rn−1
∣∣γφ(x′)∣∣p dx′
=∫ 1
0
∫Rn−1
∣∣γφ(x′)∣∣p dx′dxn
≤ C∫ 1
0
∫Rn−1
∣∣φ (x′,xn)∣∣p dx′dxn
+C∫ 1
0
∫Rn−1
∣∣∣∣∫ xn
0
∂φ (x′, t)∂ t
dt∣∣∣∣p dx′dxn
≤ C ||φ ||p0,p,Rn++C
∫ 1
0xp−1
n
∫Rn−1
∫ xn
0
∣∣∣∣∂φ (x′, t)∂ t
∣∣∣∣p dtdx′dxn
≤ C ||φ ||p0,p,Rn++C
∫ 1
0xp−1
n
∫Rn−1
∫∞
0
∣∣∣∣∂φ (x′, t)∂ t
∣∣∣∣p dtdx′dxn
≤ C ||φ ||p0,p,Rn++
Cp
∫Rn−1
∫∞
0
∣∣∣∣∂φ (x′, t)∂ t
∣∣∣∣p dtdx′
≤ C ||φ ||p1,p,Rn+
This proves the lemma.
1483