Chapter 45

Traces Of Sobolev Spaces45.1 Traces Of Sobolev Spaces, Half Space

In this section consider the trace of W m,p(Rn+

)onto a Sobolev space of functions defined

on Rn−1. This latter Sobolev space will be defined in terms of the following theory insuch a way that the trace map is continuous. The trace map is continuous as a map fromW m,p

(Rn+

)to W m−1,p

(Rn−1

)but here I will give a better conclusion using the above the-

ory.

Definition 45.1.1 Let θ ∈ (0,1) and let Ω be an open subset of Rm. We define

W θ ,p (Ω)≡ T(W 1,p (Ω) ,Lp (Ω) , p,1−θ

).

Thus, from the above general theory, W 1,p (Ω) ↪→ W θ ,p (Ω) ↪→ Lp (Ω) = Lp (Ω) +W 1,p (Ω) . Now we consider the trace map for Sobolev space.

Lemma 45.1.2 Let φ ∈C∞(Rn+

). Then γφ (x′)≡ φ (x′,0) . Then γ : C∞

(Rn+

)→ Lp

(Rn−1

)is continuous as a map from W 1,p

(Rn+

)to Lp

(Rn−1

).

Proof: We know

φ(x′,xn

)= γφ

(x′)+∫ xn

0

∂φ (x′, t)∂ t

dt

Then by Jensen’s inequality,∫Rn−1

∣∣γφ(x′)∣∣p dx′

=∫ 1

0

∫Rn−1

∣∣γφ(x′)∣∣p dx′dxn

≤ C∫ 1

0

∫Rn−1

∣∣φ (x′,xn)∣∣p dx′dxn

+C∫ 1

0

∫Rn−1

∣∣∣∣∫ xn

0

∂φ (x′, t)∂ t

dt∣∣∣∣p dx′dxn

≤ C ||φ ||p0,p,Rn++C

∫ 1

0xp−1

n

∫Rn−1

∫ xn

0

∣∣∣∣∂φ (x′, t)∂ t

∣∣∣∣p dtdx′dxn

≤ C ||φ ||p0,p,Rn++C

∫ 1

0xp−1

n

∫Rn−1

∫∞

0

∣∣∣∣∂φ (x′, t)∂ t

∣∣∣∣p dtdx′dxn

≤ C ||φ ||p0,p,Rn++

Cp

∫Rn−1

∫∞

0

∣∣∣∣∂φ (x′, t)∂ t

∣∣∣∣p dtdx′

≤ C ||φ ||p1,p,Rn+

This proves the lemma.

1483

Chapter 45Traces Of Sobolev Spaces45.1 Traces Of Sobolev Spaces, Half SpaceIn this section consider the trace of W”? (R’) onto a Sobolev space of functions definedon R"~!. This latter Sobolev space will be defined in terms of the following theory insuch a way that the trace map is continuous. The trace map is continuous as a map fromw”? (R") tow"! (IR"!) but here I will give a better conclusion using the above the-ory.Definition 45.1.1 Let 6 € (0,1) and let Q be an open subset of R. We defineW°? (Q) =T (W!? (Q),L? (Q),p, 1-8).Thus, from the above general theory, W!? (Q) + W®? (Q) — L?(Q) = LP (Q) +W!? (Q). Now we consider the trace map for Sobolev space.Lemma 45.1.2 Let @ € C” (R"_) . Then 7 (x’) = @ (x’,0). Then y:C™ (R'"_) > L? (R"“!)is continuous as a map from W':P (R’) to LP (R"™') .Proof: We know! _ ! *n 0 (x’,t)6 (x0) = 70 (x') + | > atThen by Jensen’s inequality,J\|P /[,,..\o [Paxol op= [ I... ly@ (x!) |? dx'dxn1c| | | ( (x’ xn) ) |? dx'dxnRr-lIAxn tac mr os 99 (1) al ax'ay,-1 “wn do (x’,t) p< CllOlB pe te [et [PO aaaforo} 0 / PpS C\lollo pz +e xP LL oo (st) dtdx! dxpoot (x’,t) ,S CllOllo pg + — = he ff * atdx< Clo? 2»This proves the lemma.1483