1490 CHAPTER 45. TRACES OF SOBOLEV SPACES

Lemma 45.3.4 Let Λ be the generator of G(t) and let t → g(t) be in C1 (0,∞;A1). Thenthere exists a unique solution to the initial value problem

y′−Λy = g, y(0) = y0 ∈ D(Λ)

and it is given by

y(t) = G(t)y0 +∫ t

0G(t− s)g(s)ds. (45.3.8)

This solution is continuous having continuous derivative and has values in D(Λ).

Proof: First I show the following claim.Claim:

∫ t0 G(t− s)g(s)ds ∈ D(Λ) and

Λ

(∫ t

0G(t− s)g(s)ds

)= G(t)g(0)−g(t)+

∫ t

0G(t− s)g′ (s)ds

Proof of the claim:

1h

(G(h)

∫ t

0G(t− s)g(s)ds−

∫ t

0G(t− s)g(s)ds

)

=1h

(∫ t

0G(t− s+h)g(s)ds−

∫ t

0G(t− s)g(s)ds

)=

1h

(∫ t−h

−hG(t− s)g(s+h)ds−

∫ t

0G(t− s)g(s)ds

)

=1h

∫ 0

−hG(t− s)g(s+h)ds+

∫ t−h

0G(t− s)

g(s+h)−g(s)h

−1h

∫ t

t−hG(t− s)g(s)ds

Using the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-rem the limit as h→ 0 of the above equals

G(t)g(0)−g(t)+∫ t

0G(t− s)g′ (s)ds

which proves the claim.Since y0 ∈ D(Λ) ,

G(t)Λy0 = G(t) limh→0

G(h)y0− y0

h

= limh→0

G(t +h)−G(t)h

y0

= limh→0

G(h)G(t)y0−G(t)y0

h(45.3.9)

1490 CHAPTER 45. TRACES OF SOBOLEV SPACESLemma 45.3.4 Let A be the generator of G(t) and let t + g(t) be in C! (0,00;A,). Thenthere exists a unique solution to the initial value problemy'—Ay=g, y(0) =yo € D(A)and it is given byy(t) = Git [ Gs e6) ds. (45.3.8)This solution is continuous having continuous derivative and has values in D(A).Proof: First I show the following claim.Claim: {j G(t—s)g(s)ds € D(A) anda( | G0—s)a(s)as) = G(t) (0) -s()+ [ Gu-s)¢ JasProof of the claim:7 (G0 [ Ge—sjaisyas— [/Ge—s)a(s)as)= 7 (fet -s+meisyas— [Ge—s)e(s)as)th_ : (J Glr-sjalo+mas— [ G(e—s)s(s)ds)07 1 Ge-sgls+mast [Gay Se 8)1 rt-—= G(t—s)g(s)dshSi-hUsing the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-rem the limit as h + 0 of the above equalsGin)s(0)-8()+ [ Gu-s)¢(o)aswhich proves the claim.Since yo € D(A),. G(h)yo-G(t)Ayo = G(t) lim S20G(t+h)—G(t)hd hjim EAE) ¥0—G (O¥0lim 7 (45.3.9)